中文版 | English
题名

B-C-N 固溶体包覆 cBN 的高温高压制备与表征

其他题名
SYNTHESIS AND CHARACTERIZATION OF CBNCOATED BY B-C-N SOLID SOLUTION AT HIGHTEMPERATURE AND HIGH PRESSURE
姓名
姓名拼音
CAI Tuo
学号
12032054
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王培
导师单位
前沿与交叉科学研究院
论文答辩日期
2022-05-13
论文提交日期
2022-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

立方氮化硼(cBN)是已知硬度仅次于金刚石的超硬材料,在含铁簇元素材料 的切、磨、削等加工中有着不可替代的作用。然而,cBN 的硬度只有金刚石的一半, 其加工效率和使用寿命较低。考虑到 cBN 与金刚石在晶体结构与原子共价键半径 的近亲关系,可通过在 cBN 表层包覆碳类材料,经高温高压固溶强化处理,形成 硬度更高和热稳定性更好的 B-C-N 壳层包覆 cBN 材料,增强其机械性能与化学惰性,从而提高其加工效率与使用寿命。 本工作使用 Kawai 型大腔体压机装置,以不同粒度的 cBN 粉末和石墨烯粉末 作为主要原料,研究了制备聚晶 cBN 及 B-C-N 固溶体包覆 cBN 材料的高温高压 合成技术与方法。主要研究内容包括:1)聚晶 cBN 材料的设计和表征,探讨在各 种压力合成条件下温度对烧结体特性的影响,为对比研究 B-C-N 型固溶体壳层奠 定了试验基础和理论依据。2)以相同的 cBN 初始材料,按照一定比例混合化学活 性更好的石墨烯,通过控制温度、压力条件,制备不同的 B-C-N 固溶体包覆 cBN 的样品,通过对其性能表征,研究了压力、温度、组分对 B-C-N 固溶体包覆 cBN 烧结体性能的影响,并与纯的聚晶 cBN 烧结体性能进行了对比研究。本文主要得 到了以下结论: 1. 选择合适的原材料是得到优良 B-C-N 固溶材料的必要前提。本文对 cBN 的 原材料及粒度的影响进行了探讨,发现在采用的两种不同的 cBN 原材料,A 型 cBN 粉末粒度分布集中,颗粒大小均匀,更适合用于 cBN 基超硬材料的高温高压合成。 2. 在不同压力和温度条件下合成的聚晶 cBN 材料表现出不同的性质。1)通过 对比实验,发现在合成压力高于 16 GPa 的条件下,当合成温度高于 1600 °C 时, 聚晶 cBN 才能烧结成块,并且随着温度的上升,颗粒的晶界会模糊,晶粒也会长 大,在合成条件为 18 GPa、2000 °C 时,合成的聚晶 cBN 外观呈现半透明状,在 该条件下合成了高纯度的烧结完好的聚晶 cBN。2)压力的升高抑制了晶粒的长大, 同时增加了晶粒间的位错和缺陷的产生,同时温度的上升使其显微结构明显致密 化,18 GPa、2 000 °C 样品的维氏硬度达到了 45 GPa,相比单晶 cBN 硬度 30 GPa 有很大提升。 3. 在高压下碳原子固溶到 cBN 中形成 B-C-N 固溶体与温度正相关。1)研 究发现在相同压力下随着温度越高,越有利于碳原子溶解到金刚石中:温度超过 2 000 °C 时晶界中会产生石墨烯转变的金刚石,当温度持续上升,金刚石在拉曼和 X-ray 图谱中峰值减弱,当到达 2 300 °C 时消失,同时材料外观由不透明的深 色转变为半透明,金刚石中的碳原子固溶到 cBN 晶格中,导致了 cBN 的晶格明显 减小,符合 Vegard’s law。2)由于固溶强化作用,随着温度上升带来的固溶度的提 高,样品硬度和热稳定性有一定提升,18 GPa、2300 °C 样品小加载时维氏硬度高 达 90 GPa,大加载时稳定在 60 GPa,相比聚晶 cBN 硬度 45 GPa 有显著提高;热稳 定性由原料 cBN 的 1073 °C 提高到了 1180 °C,比聚晶 cBN 的 1130 °C 有提高。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] BOBZIN K. High-performance coatings for cutting tools[J]. CIRP Journal of ManufacturingScience and Technology, 2017, 18: 1-9.
[2] ZOYA Z, KRISHNAMURTHY R. The performance of cBN tools in the machining of titaniumalloys[J]. Journal of materials processing technology, 2000, 100(1-3): 80-86.
[3] HAINES J, LEGER J, BOCQUILLON G. Synthesis and design of superhard materials[J].Annual Review of Materials Research, 2001, 31(1): 1-23.
[4] MCMILLAN P F. New materials from high-pressure experiments[J]. Nature materials, 2002,1(1): 19-25.
[5] WANG P, HE D, WANG L, et al. Diamond-cBN alloy : a universal cutting material[J]. AppliedPhysics Letters, 2015, 107(10): 101901.
[6] LE GODEC Y, COURAC A, SOLOZHENKO V L. High-pressure synthesis of superhard andultrahard materials[J]. Journal of Applied Physics, 2019, 126(15): 151102.
[7] LIU X, JIA X, ZHANG Z, et al. Synthesis and characterization of new “BCN”diamondunder high pressure and high temperature conditions[J]. Crystal Growth & Design, 2011, 11(4): 1006-1014.
[8] MELAIBARI A, MOLIAN P, SHROTRIYA P. Laser/waterjet heat treatment of polycrystallinecubic/wurtzite boron nitride composite for reaching hardness of polycrystalline diamond[J].Materials Letters, 2012, 89: 123-125.
[9] EICHLER J, LESNIAK C. Boron nitride (BN) and BN composites for high-temperature applications[J]. Journal of the European Ceramic Society, 2008, 28(5): 1105-1109.
[10] RAMON S. Boron nitride and carbon nanostructures : synthesis, characterization and ab initiocalculations[D]. Ph. D. thesis], University of San Luis Potosi, 2015.
[11] 邢淑芝, 郭明, 侯丽新, 等. 立方氮化硼的结构和基本性质[J]. 现代交际: 下半月, 2014(12):98-98.
[12] LOGINOV P, MISHNAEVSKY JR L, LEVASHOV E, et al. Diamond and cBN hybrid andnanomodified cutting tools with enhanced performance : Development, testing and modelling[J]. Materials & Design, 2015, 88: 310-319.
[13] KLAGES C P, FRYDA M, MATTHÉE T, et al. Diamond coatings and cBN coatings for tools[J]. International Journal of Refractory Metals and Hard Materials, 1998, 16(3): 171-176.
[14] KIR D, ISLAK S, ÇELIK H, et al. Effect of the cBN content and sintering temperature on thetransverse rupture strength and hardness of cBN/diamond cutting tools[J]. 2012.
[15] GRABCHENKO A I, FEDOROVICH V A, PYZHOV I, et al. Simulation of grinding processof polycrystalline superhard materials[C]//Key Engineering Materials: volume 581. Trans TechPubl, 2014: 217-223.
[16] VEPŘEK S. The search for novel, superhard materials[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999, 17(5): 2401-2420.
[17] KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials[J]. Science, 2005,308(5726): 1268-1269.
[18] TANIGUCHI T, WATANABE K, KOIZUMI S. Defect characterization of cBN single crystalsgrown under HP/HT[J]. physica status solidi (a), 2004, 201(11): 2573-2577.
[19] RATHINASABAPATHY S, SANTHOSH M, ASOKAN M. Significance of boron nitride incomposites and its applications[J]. Recent Advances in Boron-Containing Materials, 2020: 63.
[20] WENTORF R, DEVRIES R C, BUNDY F. Sintered superhard materials[J]. Science, 1980, 208(4446): 873-880.
[21] YU M, CHEN S, CUI D. The synthesis of boron nitride dendrite crystals under hydrothermalcondition[J]. JOURNAL OF FUNCTIONAL MATERIALS, 2006, 37(11): 1856.
[22] CHEN Z, LAI Z, SUN C. Preparation of BN nanorings by benzene thermal synthesis method[J]. JOURNAL OF FUNCTIONAL MATERIALS, 2006, 37(6): 919.
[23] WANG J, YANG G, ZHANG C, et al. Cubic-BN nanocrystals synthesis by pulsed laser inducedliquid-solid interfacial reaction[J]. Chemical physics letters, 2003, 367(1-2): 10-14.
[24] 李琳琳, 李爱军, 彭雨晴, 等. Progress on boron nitride interface coating achieved by CVD[J].宇航材料工艺, 2016, 46(4): 8-28.
[25] SILBERBERG M S, AMATEIS P, VENKATESWARAN R, et al. Chemistry : The molecularnature of matter and change[M]. Mosby St. Louis, MO, 1996.
[26] ZARECHNAYA E Y, DUBROVINSKY L, DUBROVINSKAIA N, et al. Superhard semiconducting optically transparent high pressure phase of boron[J]. Physical Review Letters, 2009,102(18): 185501.
[27] KURAKEVYCH O O, SOLOZHENKO V L. Crystal structure of dense pseudo-cubic boronallotrope, pc-B52, by powder X-ray diffraction[J]. Journal of Superhard Materials, 2013, 35(1):60-63.
[28] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al. Ultimate metastable solubility of boron in diamond : Synthesis of superhard diamondlike BC5[J]. Physical ReviewLetters, 2009, 102(1): 015506.
[29] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10): 1385-1387.
[30] DUBROVINSKAIA N, SOLOZHENKO V L, MIYAJIMA N, et al. Superhard nanocompositeof dense polymorphs of boron nitride : Noncarbon material has reached diamond hardness[J].Applied Physics Letters, 2007, 90(10): 101912.
[31] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures byextreme conditions : High-pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced materials, 2012, 24(12): 1540-1544.
[32] LIU G, KOU Z, YAN X, et al. Submicron cubic boron nitride as hard as diamond[J]. AppliedPhysics Letters, 2015, 106(12): 121901.
[33] SUN K, LIANG Y, ZHU Y, et al. The effect of graphene oxide on the mechanical properties ofcBN composites fabricated by HTHP method[J]. Diamond and Related Materials, 2020, 104:107754.
[34] LIANG H, LIN W, WANG Q, et al. Ultrahard and stable nanostructured cubic boron nitridefrom hexagonal boron nitride[J]. Ceramics International, 2020, 46(8): 12788-12794.
[35] SJÖSTRÖM H, STAFSTRÖM S, BOMAN M, et al. Superhard and elastic carbon nitride thinfilms having fullerenelike microstructure[J]. Physical Review Letters, 1995, 75(7): 1336.
[36] ULRICH S, EHRHARDT H, SCHWAN J, et al. Subplantation effect in magnetron sputteredsuperhard boron carbide thin films[J]. Diamond and related materials, 1998, 7(6): 835-838.
[37] MATTHEY B, PIRLING T, HERRMANN M, et al. Determination of bulk residual stresses insuperhard diamond-SiC materials[J]. Journal of the European Ceramic Society, 2020, 40(4):1035-1042.
[38] MERCHUK J, BERZIN I. Distribution of energy dissipation in airlift reactors[J]. ChemicalEngineering Science, 1995, 50(14): 2225-2233.
[39] HANSEN N. Hall-Petch relation and boundary strengthening[J]. Scripta materialia, 2004, 51(8): 801-806.
[40] ZHAO Y, HE D, DAEMEN L, et al. Superhard B-C-N materials synthesized in nanostructuredbulks[J]. Journal of materials research, 2002, 17(12): 3139-3145.
[41] TANG M, HE D, WANG W, et al. Superhard solid solutions of diamond and cubic boron nitride[J]. Scripta Materialia, 2012, 66(10): 781-784.
[42] LIU X, CHEN X, MA H A, et al. Ultrahard stitching of nanotwinned diamond and cubic boronnitride in C2-BN composite[J]. Scientific reports, 2016, 6(1): 1-9.
[43] KLIMCZYK P, WYŻGA P, CYBOROŃ J, et al. Phase stability and mechanical properties ofAl2O3-cBN composites prepared via spark plasma sintering[J]. Diamond and Related Materials,2020, 104: 107762.
[44] ZHANG J, TU R, GOTO T. Spark plasma sintering of Al2O3-cBN composites facilitated byNi nanoparticle precipitation on cBN powder by rotary chemical vapor deposition[J]. Journalof the European Ceramic Society, 2011, 31(12): 2083-2087.
[45] LI Y, LI S, LV R, et al. Study of high-pressure sintering behavior of cBN composites startingwith cBN-Al mixtures[J]. Journal of Materials Research, 2008, 23(9): 2366-2372.
[46] FAGNONI M, DONDI D, RAVELLI D, et al. Photocatalysis for the Formation of the C-C Bond[J]. Chemical Reviews, 2007, 107(6): 2725-2756.
[47] ÅGREN J. A revised expression for the diffusivity of carbon in binary Fe-C austenite[J]. Scriptametallurgica, 1986, 20(11): 1507-1510.
[48] O’CONNELL M J. Carbon nanotubes: properties and applications[M]. CRC press, 2018.
[49] SHENDEROVA O A, GRUEN D M. Ultrananocrystalline diamond : synthesis, properties andapplications[M]. William Andrew, 2012.
[50] TOYODA M, INAGAKI M. Heavy oil sorption using exfoliated graphite : New application ofexfoliated graphite to protect heavy oil pollution[J]. Carbon, 2000, 38(2): 199-210.
[51] BUNDY F, KASPER J. Hexagonal diamond—a new form of carbon[J]. The Journal of ChemicalPhysics, 1967, 46(9): 3437-3446.
[52] HARRISON B S, ATALA A. Carbon nanotube applications for tissue engineering[J]. Biomaterials, 2007, 28(2): 344-353.
[53] 李飞, 张涵. 石墨烯在防腐涂料中的应用分析及展望[J]. 当代化工研究, 2022.
[54] FROST D, POE B, TRøNNES R, et al. A new large-volume multianvil system[J]. Physics ofthe Earth and Planetary Interiors, 2004, 143144: 507-514.
[55] 何飞, 贺端威, 马迎功, 等. 二级 6-8 型静高压装置厘米级腔体的设计原理与实验研究[J].高压物理学报, 2015(3): 161-168.
[56] REN X, YANG Q, JAMES R, et al. Cutting temperatures in hard turning chromium hardfacingswith PcBN tooling[J]. Journal of Materials Processing Technology, 2004, 147(1): 38-44.
[57] DUB S, LYTVYN P, STRELCHUK V, et al. Vickers hardness of diamond and cBN singlecrystals : AFM approach[J]. Crystals, 2017, 7(12): 369.
[58] BADZIAN A R. Cubic boron nitride-diamond mixed crystals[J]. Materials Research Bulletin,1981, 16(11): 1385-1393.

所在学位评定分委会
物理系
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343147
专题理学院_物理系
推荐引用方式
GB/T 7714
蔡拓. B-C-N 固溶体包覆 cBN 的高温高压制备与表征[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032054-蔡拓-物理系.pdf(8656KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蔡拓]的文章
百度学术
百度学术中相似的文章
[蔡拓]的文章
必应学术
必应学术中相似的文章
[蔡拓]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。