[1] KIM D H, GHAFFARI R, LU N, et al. Flexible and stretchable electronics for biointegrated devices [J]. Annu Rev Biomed Eng, 2012, 14: 113-28.
[2] QUAN Y, WEI X, XIAO L, et al. Highly sensitive and stable flexible pressure sensors with micro-structured electrodes [J]. Journal of Alloys and Compounds, 2017, 699: 824-31.
[3] DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J]. Nat Commun, 2014, 5: 4496.
[4] TRUNG T Q, LEE N E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare [J]. Adv Mater, 2016, 28(22): 4338-72.
[5] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring [J]. Nano Energy, 2020, 70.
[6] 高久伟, 卢乾波, 郑璐. 柔性生物电传感技术 [J]. 材料导报, 2020, 31(01): 1095-106.
[7] QIU J, GUO X, CHU R, et al. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin [J]. ACS Appl Mater Interfaces, 2019, 11(43): 40716-25.
[8] CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin [J]. Nature Materials, 2016, 15(9): 937-50.
[9] JAMONE L, NATALE L, METTA G, et al. Highly Sensitive Soft Tactile Sensors for an Anthropomorphic Robotic Hand [J]. IEEE Sensors Journal, 2015, 15(8): 4226-33.
[10] XU K, LU Y, TAKEI K. Flexible Hybrid Sensor Systems with Feedback Functions [J]. Advanced Functional Materials, 2020, 31(39).
[11] HAMMOCK M L, CHORTOS A, TEE B C, et al. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress [J]. Adv Mater, 2013, 25(42): 5997-6038.
[12] WANG S, OH J Y, XU J, et al. Skin-Inspired Electronics: An Emerging Paradigm [J]. Acc Chem Res, 2018, 51(5): 1033-45.
[13] NIE B, LIU S, QU Q, et al. Bio-inspired flexible electronics for smart E-skin [J]. Acta Biomater, 2022, 139: 280-95.
[14] 刘秀丽. 基于电容原理的阵列式柔性触觉传感器的研究 [D]; 河北工业大学, 2018.
[15] ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin [J]. Chemical Engineering Journal, 2021, 420.
[16] ZANG Y, ZHANG F, DI C-A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications [J]. Materials Horizons, 2015, 2(2): 140-56.
[17] 沃华蕾. 电容式三维力柔性触觉传感器的设计与制备 [D]; 浙江大学, 2019.
[18] THOUTI E, NAGARAJU A, CHANDRAN A, et al. Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring [J]. Sensors and Actuators A: Physical, 2020, 314.
[19] 罗泽邦. 分布式柔性压力传感器的研究 [D]; 中北大学, 2020.
[20] LI S, LI R, GONZáLEZ O G, et al. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection [J]. Composites Science and Technology, 2021, 203.
[21] 程丁儒. 基于电容阵列的柔性触觉传感器的研究 [D]; 浙江大学, 2017.
[22] 熊耀旭. 柔性压力传感器的制备及灵敏度影响因素探究 [D]; 中国科学院大学(中国科学院深圳先进技术研究院), 2020.
[23] DUAN L, D'HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application [J]. Progress in Materials Science, 2020, 114.
[24] FIORILLO A S, CRITELLO C D, PULLANO S A. Theory, technology and applications of piezoresistive sensors: A review [J]. Sensors and Actuators A: Physical, 2018, 281: 156-75.
[25] ZHENG Q, LEE J-H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors [J]. Materials Today, 2020, 36: 158-79.
[26] PENG S, WU S, YU Y, et al. Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces [J]. ACS Appl Mater Interfaces, 2020, 12(19): 22179-90.
[27] DING Y, XU T, ONYILAGHA O, et al. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges [J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-704.
[28] CAO M, FAN S, QIU H, et al. CB Nanoparticles Optimized 3D Wearable Graphene Multifunctional Piezoresistive Sensor Framed by Loofah Sponge [J]. ACS Appl Mater Interfaces, 2020, 12(32): 36540-7.
[29] CHORSI M T, CURRY E J, CHORSI H T, et al. Piezoelectric Biomaterials for Sensors and Actuators [J]. Adv Mater, 2019, 31(1): e1802084.
[30] PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO(3) nanoparticles and graphitic carbons [J]. Adv Mater, 2012, 24(22): 2999-3004, 2937.
[31] CHEN X, SHAO J, AN N, et al. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs [J]. J Mater Chem C, 2015, 3(45): 11806-14.
[32] JIANG J, TU S, FU R, et al. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane [J]. ACS Appl Mater Interfaces, 2020, 12(30): 33989-98.
[33] LIN W, WANG B, PENG G, et al. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli [J]. Adv Sci (Weinh), 2021, 8(3): 2002817.
[34] BAE K, JEONG J, CHOI J, et al. Large-Area, Crosstalk-Free, Flexible Tactile Sensor Matrix Pixelated by Mesh Layers [J]. ACS Appl Mater Interfaces, 2021, 13(10): 12259-67.
[35] YANG P-K, LIN Z-H, PRADEL K C, et al. Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors [J]. ACS Nano, 2015, 9(1): 901-7.
[36] 彭赛. 基于聚二甲基硅氧烷的柔性压力传感器件及其阵列系统的设计与实现 [D]; 上海交通大学, 2019.
[37] JOO Y, BYUN J, SEONG N, et al. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor [J]. Nanoscale, 2015, 7(14): 6208-15.
[38] ZHOU Q, JI B, WEI Y, et al. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range [J]. Journal of Materials Chemistry A, 2019, 7(48): 27334-46.
[39] SHARMA S, CHHETRY A, SHARIFUZZAMAN M, et al. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition [J]. ACS Appl Mater Interfaces, 2020, 12(19): 22212-24.
[40] KIM Y, JANG S, OH J H. Fabrication of highly sensitive capacitive pressure sensors with porous PDMS dielectric layer via microwave treatment [J]. Microelectronic Engineering, 2019, 215.
[41] LUO Y, SHAO J, CHEN S, et al. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays [J]. ACS Appl Mater Interfaces, 2019, 11(19): 17796-803.
[42] LUO Z, CHEN J, ZHU Z, et al. High-Resolution and High-Sensitivity Flexible Capacitive Pressure Sensors Enhanced by a Transferable Electrode Array and a Micropillar-PVDF Film [J]. ACS Appl Mater Interfaces, 2021, 13(6): 7635-49.
[43] MAHATA C, ALGADI H, LEE J, et al. Biomimetic-inspired micro-nano hierarchical structures for capacitive pressure sensor applications [J]. Measurement, 2020, 151.
[44] PIGNANELLI J, SCHLINGMAN K, CARMICHAEL T B, et al. A comparative analysis of capacitive-based flexible PDMS pressure sensors [J]. Sensors and Actuators A: Physical, 2019, 285: 427-36.
[45] RUTH S R A, BEKER L, TRAN H, et al. Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals [J]. Advanced Functional Materials, 2019, 30(29).
[46] SHUAI X, ZHU P, ZENG W, et al. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure [J]. ACS Appl Mater Interfaces, 2017, 9(31): 26314-24.
[47] MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer [J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-40.
[48] JIN T, PAN Y, JEON G J, et al. Ultrathin Nanofibrous Membranes Containing Insulating Microbeads for Highly Sensitive Flexible Pressure Sensors [J]. ACS Appl Mater Interfaces, 2020, 12(11): 13348-59.
[49] SOTGIU E, AGUIAM D E, CALAZA C, et al. Surface Texture Detection With a New Sub-mm Resolution Flexible Tactile Capacitive Sensor Array for Multimodal Artificial Finger [J]. Journal of Microelectromechanical Systems, 2020, 29(5): 629-36.
[50] ZHANG M, YANG Z, WU Z, et al. Preparation and properties of a novel sandwich structurepolydimethylsiloxane/polyvinylidenefluorideAgnanowires/polydimethylsiloxaneflexible strain sensor [J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1024-32.
[51] 杨叶. 基于PVDF的柔性压力传感器的制备及性能研究 [D]; 电子科技大学, 2020.
[52] CAI X, LEI T, SUN D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J]. RSC Advances, 2017, 7(25): 15382-9.
[53] HUANG T, YANG S, HE P, et al. Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors [J]. ACS Appl Mater Interfaces, 2018, 10(36): 30732-40.
[54] 覃双. 聚偏氟乙烯薄膜极化和动高压冲击响应研究 [D]; 中国科学技术大学, 2020.
[55] 刘奇. 静电纺丝制单电极压电传感器、磁性滤膜和La掺杂SmFeO_3的磁性 [D]; 青岛大学, 2020.
[56] 张中振. 柔性传感器阵列数据采集系统设计与开发 [D]; 华中科技大学, 2019.
[57] PARK H-Y, YANG S-H, KIM S, et al. A touch sensor readout circuit using switched- capacitor charge pump [J]. IEICE Electronics Express, 2012, 9(13): 1090-5.
[58] LIANG G, WANG Y, MEI D, et al. Flexible Capacitive Tactile Sensor Array With Truncated Pyramids as Dielectric Layer for Three-Axis Force Measurement [J]. Journal of Microelectromechanical Systems, 2015, 24(5): 1510-9.
[59] 陈培敏, 田杨萌, 王彩霞, et al. 基于STM32和LabVIEW的心电信号采集系统设计 [J]. 物联网技术, 2018, 8(11): 16-7.
[60] 周到, 黄敏. 基于LabVIEW串口的心电信号传输 [J]. 科技创新与应用, 2019, (02): 32-3.
修改评论