中文版 | English
题名

基于PVDF的柔性介电压力传感器的研究

其他题名
RESEARCH ON FLEXIBLE DIELECTRIC PRESSURE SENSOR BASED ON PVDF
姓名
姓名拼音
ZHOU Nian
学号
12032303
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
李晖
导师单位
中国科学院深圳理工大学(筹)
论文答辩日期
2022-05-11
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

柔性压力传感器因其柔性、贴合皮肤可穿戴以及可任意变形等特点,在可穿戴设备、人机交互和医疗健康检测等重要领域中,受到越来越多的关注和研究。其中电容式柔性压力传感器因灵敏度高和易阵列化等特点被广泛使用,常用作分布式压力测量。本文从电容压力传感器的介电层结构入手,建立传感器灵敏度等性能与微结构空间复杂度关系模型,研究影响电容传感器性能的物理学效应与机制。本论文设计优化基于微圆柱阵列化的介电层结构,选用杨氏模量较小的聚二甲基硅氧烷(PDMS)作为基底材料同时掺杂介电材料聚偏氟乙烯(PVDF)来提高压力传感器的灵敏度。制备的介电层通过等离子处理键合,在微结构层生成牢固的化学键,增强结构的稳定性和整个传感器的一致性,有利于提高多通道阵列电容位点的性能统一。通过激光切割制备可图案化的掩模版,喷涂银纳米线作为电极。选择光刻制备微结构模具,旋涂制备介电层薄膜。对制备的柔性压力传感器进行了性能分析,在低压强(<1kPa下灵敏度约为0.35kPa-136ms的快速响应时间,通过2000次重复性测试,具有良好的耐久度与稳定性,柔韧性较好,弧面不影响性能。搭建电容阵列采集软硬件系统,使用数字电容转换芯片PCap01AD采集,将其接入自研设计的电容采集电路,能较好的实现多通道的电容阵列测量,检测范围广,采集速度达到700Hz。通过单片机处理蓝牙发送数据与电脑上位机通信,实现显示与存储功能。达到了将采集系统轻便小型化的目的,能应用到人体健康检测、电子皮肤方面以及更多复杂的场景中。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] KIM D H, GHAFFARI R, LU N, et al. Flexible and stretchable electronics for biointegrated devices [J]. Annu Rev Biomed Eng, 2012, 14: 113-28.
[2] QUAN Y, WEI X, XIAO L, et al. Highly sensitive and stable flexible pressure sensors with micro-structured electrodes [J]. Journal of Alloys and Compounds, 2017, 699: 824-31.
[3] DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J]. Nat Commun, 2014, 5: 4496.
[4] TRUNG T Q, LEE N E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare [J]. Adv Mater, 2016, 28(22): 4338-72.
[5] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring [J]. Nano Energy, 2020, 70.
[6] 高久伟, 卢乾波, 郑璐. 柔性生物电传感技术 [J]. 材料导报, 2020, 31(01): 1095-106.
[7] QIU J, GUO X, CHU R, et al. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin [J]. ACS Appl Mater Interfaces, 2019, 11(43): 40716-25.
[8] CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin [J]. Nature Materials, 2016, 15(9): 937-50.
[9] JAMONE L, NATALE L, METTA G, et al. Highly Sensitive Soft Tactile Sensors for an Anthropomorphic Robotic Hand [J]. IEEE Sensors Journal, 2015, 15(8): 4226-33.
[10] XU K, LU Y, TAKEI K. Flexible Hybrid Sensor Systems with Feedback Functions [J]. Advanced Functional Materials, 2020, 31(39).
[11] HAMMOCK M L, CHORTOS A, TEE B C, et al. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress [J]. Adv Mater, 2013, 25(42): 5997-6038.
[12] WANG S, OH J Y, XU J, et al. Skin-Inspired Electronics: An Emerging Paradigm [J]. Acc Chem Res, 2018, 51(5): 1033-45.
[13] NIE B, LIU S, QU Q, et al. Bio-inspired flexible electronics for smart E-skin [J]. Acta Biomater, 2022, 139: 280-95.
[14] 刘秀丽. 基于电容原理的阵列式柔性触觉传感器的研究 [D]; 河北工业大学, 2018.
[15] ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin [J]. Chemical Engineering Journal, 2021, 420.
[16] ZANG Y, ZHANG F, DI C-A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications [J]. Materials Horizons, 2015, 2(2): 140-56.
[17] 沃华蕾. 电容式三维力柔性触觉传感器的设计与制备 [D]; 浙江大学, 2019.
[18] THOUTI E, NAGARAJU A, CHANDRAN A, et al. Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring [J]. Sensors and Actuators A: Physical, 2020, 314.
[19] 罗泽邦. 分布式柔性压力传感器的研究 [D]; 中北大学, 2020.
[20] LI S, LI R, GONZáLEZ O G, et al. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection [J]. Composites Science and Technology, 2021, 203.
[21] 程丁儒. 基于电容阵列的柔性触觉传感器的研究 [D]; 浙江大学, 2017.
[22] 熊耀旭. 柔性压力传感器的制备及灵敏度影响因素探究 [D]; 中国科学院大学(中国科学院深圳先进技术研究院), 2020.
[23] DUAN L, D'HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application [J]. Progress in Materials Science, 2020, 114.
[24] FIORILLO A S, CRITELLO C D, PULLANO S A. Theory, technology and applications of piezoresistive sensors: A review [J]. Sensors and Actuators A: Physical, 2018, 281: 156-75.
[25] ZHENG Q, LEE J-H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors [J]. Materials Today, 2020, 36: 158-79.
[26] PENG S, WU S, YU Y, et al. Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces [J]. ACS Appl Mater Interfaces, 2020, 12(19): 22179-90.
[27] DING Y, XU T, ONYILAGHA O, et al. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges [J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-704.
[28] CAO M, FAN S, QIU H, et al. CB Nanoparticles Optimized 3D Wearable Graphene Multifunctional Piezoresistive Sensor Framed by Loofah Sponge [J]. ACS Appl Mater Interfaces, 2020, 12(32): 36540-7.
[29] CHORSI M T, CURRY E J, CHORSI H T, et al. Piezoelectric Biomaterials for Sensors and Actuators [J]. Adv Mater, 2019, 31(1): e1802084.
[30] PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO(3) nanoparticles and graphitic carbons [J]. Adv Mater, 2012, 24(22): 2999-3004, 2937.
[31] CHEN X, SHAO J, AN N, et al. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs [J]. J Mater Chem C, 2015, 3(45): 11806-14.
[32] JIANG J, TU S, FU R, et al. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane [J]. ACS Appl Mater Interfaces, 2020, 12(30): 33989-98.
[33] LIN W, WANG B, PENG G, et al. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli [J]. Adv Sci (Weinh), 2021, 8(3): 2002817.
[34] BAE K, JEONG J, CHOI J, et al. Large-Area, Crosstalk-Free, Flexible Tactile Sensor Matrix Pixelated by Mesh Layers [J]. ACS Appl Mater Interfaces, 2021, 13(10): 12259-67.
[35] YANG P-K, LIN Z-H, PRADEL K C, et al. Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors [J]. ACS Nano, 2015, 9(1): 901-7.
[36] 彭赛. 基于聚二甲基硅氧烷的柔性压力传感器件及其阵列系统的设计与实现 [D]; 上海交通大学, 2019.
[37] JOO Y, BYUN J, SEONG N, et al. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor [J]. Nanoscale, 2015, 7(14): 6208-15.
[38] ZHOU Q, JI B, WEI Y, et al. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range [J]. Journal of Materials Chemistry A, 2019, 7(48): 27334-46.
[39] SHARMA S, CHHETRY A, SHARIFUZZAMAN M, et al. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition [J]. ACS Appl Mater Interfaces, 2020, 12(19): 22212-24.
[40] KIM Y, JANG S, OH J H. Fabrication of highly sensitive capacitive pressure sensors with porous PDMS dielectric layer via microwave treatment [J]. Microelectronic Engineering, 2019, 215.
[41] LUO Y, SHAO J, CHEN S, et al. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays [J]. ACS Appl Mater Interfaces, 2019, 11(19): 17796-803.
[42] LUO Z, CHEN J, ZHU Z, et al. High-Resolution and High-Sensitivity Flexible Capacitive Pressure Sensors Enhanced by a Transferable Electrode Array and a Micropillar-PVDF Film [J]. ACS Appl Mater Interfaces, 2021, 13(6): 7635-49.
[43] MAHATA C, ALGADI H, LEE J, et al. Biomimetic-inspired micro-nano hierarchical structures for capacitive pressure sensor applications [J]. Measurement, 2020, 151.
[44] PIGNANELLI J, SCHLINGMAN K, CARMICHAEL T B, et al. A comparative analysis of capacitive-based flexible PDMS pressure sensors [J]. Sensors and Actuators A: Physical, 2019, 285: 427-36.
[45] RUTH S R A, BEKER L, TRAN H, et al. Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals [J]. Advanced Functional Materials, 2019, 30(29).
[46] SHUAI X, ZHU P, ZENG W, et al. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure [J]. ACS Appl Mater Interfaces, 2017, 9(31): 26314-24.
[47] MA L, SHUAI X, HU Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer [J]. Journal of Materials Chemistry C, 2018, 6(48): 13232-40.
[48] JIN T, PAN Y, JEON G J, et al. Ultrathin Nanofibrous Membranes Containing Insulating Microbeads for Highly Sensitive Flexible Pressure Sensors [J]. ACS Appl Mater Interfaces, 2020, 12(11): 13348-59.
[49] SOTGIU E, AGUIAM D E, CALAZA C, et al. Surface Texture Detection With a New Sub-mm Resolution Flexible Tactile Capacitive Sensor Array for Multimodal Artificial Finger [J]. Journal of Microelectromechanical Systems, 2020, 29(5): 629-36.
[50] ZHANG M, YANG Z, WU Z, et al. Preparation and properties of a novel sandwich structurepolydimethylsiloxane/polyvinylidenefluorideAgnanowires/polydimethylsiloxaneflexible strain sensor [J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1024-32.
[51] 杨叶. 基于PVDF的柔性压力传感器的制备及性能研究 [D]; 电子科技大学, 2020.
[52] CAI X, LEI T, SUN D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J]. RSC Advances, 2017, 7(25): 15382-9.
[53] HUANG T, YANG S, HE P, et al. Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors [J]. ACS Appl Mater Interfaces, 2018, 10(36): 30732-40.
[54] 覃双. 聚偏氟乙烯薄膜极化和动高压冲击响应研究 [D]; 中国科学技术大学, 2020.
[55] 刘奇. 静电纺丝制单电极压电传感器、磁性滤膜和La掺杂SmFeO_3的磁性 [D]; 青岛大学, 2020.
[56] 张中振. 柔性传感器阵列数据采集系统设计与开发 [D]; 华中科技大学, 2019.
[57] PARK H-Y, YANG S-H, KIM S, et al. A touch sensor readout circuit using switched- capacitor charge pump [J]. IEICE Electronics Express, 2012, 9(13): 1090-5.
[58] LIANG G, WANG Y, MEI D, et al. Flexible Capacitive Tactile Sensor Array With Truncated Pyramids as Dielectric Layer for Three-Axis Force Measurement [J]. Journal of Microelectromechanical Systems, 2015, 24(5): 1510-9.
[59] 陈培敏, 田杨萌, 王彩霞, et al. 基于STM32和LabVIEW的心电信号采集系统设计 [J]. 物联网技术, 2018, 8(11): 16-7.
[60] 周到, 黄敏. 基于LabVIEW串口的心电信号传输 [J]. 科技创新与应用, 2019, (02): 32-3.

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343152
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
周念. 基于PVDF的柔性介电压力传感器的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032303-周念-南方科技大学.p(4280KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周念]的文章
百度学术
百度学术中相似的文章
[周念]的文章
必应学术
必应学术中相似的文章
[周念]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。