[1] KHEIRABADI A C, GROULX D. Cooling of server electronics: A design review of existing technology[J]. Applied Thermal Engineering, 2016, 105: 622-638.
[2] KIM D, YAMAMOTO Y, NAGAO S, et al. Measurement of heat dissipation and thermal-stability of power modules on DBC substrates with various ceramics by SiC micro-heater chip system and Ag sinter joining[J]. Micromachines, 2019, 10(11): 745.
[3] CHEN Y, HOU T, ZHOU X. Qualitative analysis of coupling effect of fluid velocity distribution in microchannels on the performance of the LED water cooling system[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019: 40-54.
[4] LEISERSON C E, THOMPSON N C, EMER J S, et al. There’s plenty of room at the Top: What will drive computer performance after Moore’s law?[J]. Science, 2020, 368(6495): 44-45.
[5] LU J Q. 3-D hyperintegration and packaging technologies for micro-nano systems[J]. Proceedings of the IEEE, 2009, 97(1): 18-30.
[6] KNICKERBOCKER J U, ANDRY P S, DANG B, et al. Three-dimensional silicon integration [J]. IBM Journal of Research and Development, 2008, 52(6): 553-569.
[7] LEE H H S, CHAKRABARTY K. Test challenges for 3D integrated circuits[J]. IEEE Design & Test of Computers, 2009, 26(5): 26-35.
[8] SHEN W W, LIN Y M, CHEN S C, et al. 3-D stacked technology of DRAM-logic controller using through-silicon via (TSV)[J]. IEEE Journal of the Electron Devices Society, 2018, 6:396-402.
[9] 陈桂生, 廖艳, 曾亚光, 等. 材料热物性测试的研究现状及发展需求[J]. 中國測試, 2010, 36(5): 5-8.
[10] HUST J G, LANKFORD A B. Update of thermal conductivity and electrical resistivity of electrolytic iron, tungsten, and stainless steel[J]. National Bureau of Standards Special Publication, 1984, 260: 71.
[11] QUIN S, VENUTI G, DE P F, et al. Certification of a Resin-Bonded Glass Fibre Board for Thermal Conductivity between -10°C and +50°C IRMM-440.[J]. 2000: 60-64.
[12] 奚同庚, 谢华清. 热物理性质测试技术研究现状和发展趋势[J]. 上海计量测试, 2002, 29(5): 7-12.
[13] DHAR A, SPOHN H. Fourier’s law based on microscopic dynamics[J]. Comptes Rendus Physique, 2019, 20(5): 393-401.
[14] SALMON D. Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference materials[J]. Measurement Science and Technology, 2001, 12(12): R89.
[15] ZARR R R. A history of testing heat insulators at the national institute of standards and technology[J]. Ashrae Transactions, 2001, 107: 661.
[16] FLYNN D R, ZARR R R, HAHN M H, et al. Design concepts for a new guarded hot plateapparatus for use over an extended temperature range[J]. ASTM International, 2002, 1: 1426.
[17] CHIBA H, OGUSHI T, NAKAJIMA H, et al. Steady state comparative-longitudinal heat flow method using specimen of different thicknesses for measuring thermal conductivity of lotus-type porous metals[J]. Journal of Applied Physics, 2008, 103(1): 013-15.
[18] MOVAHEDIAN B, BOROOMAND B. The solution of direct and inverse transient heat conduction problems with layered materials using exponential basis functions[J]. International journalof thermal sciences, 2014, 77: 186-198.
[19] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash Method of Determining ThermalDiffusivity, Heat Capacity, and Thermal Conductivity[J]. Journal of Applied Physics, 1961, 32 (9): 1679-1684.
[20] CASALEGNO V, VAVASSORI P, VALLE M, et al. Measurement of thermal properties of a ceramic/metal joint by laser flash method[J]. Journal of Nuclear Materials, 2010, 407(2): 83-87.
[21] JOHANSSON P, HAGENTOFT C E, ADL-ZARRABI B. Measurements of thermal properties of vacuum insulation panels by using transient plane source sensor[C]//Proceedings of the 10th International Vacuum Insulation Symposium, Ottawa, Canada, 15-16 September, 2011. 2011.
[22] HUANG L, LIU L S. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method[J]. Journal of Food Engineering, 2009, 95(1): 179-185.
[23] CARSLAW H S. Introduction to the Mathematical Theory of the Conduction of Heat in Solids [M]. Macmillan and Company, limited, 1906: 83-97.
[24] COQUARD R, BAILLIS D, QUENARD D. Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators[J]. International journal of heat and mass transfer, 2006, 49(23-24): 4511-4524.
[25] FRANCO A. An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method[J]. Applied Thermal Engineering, 2007, 27(14-15): 2495-2504.
[26] DOS SANTOS W N. Advances on the hot wire technique[J]. Journal of the European Ceramic Society, 2008, 28(1): 15-20.
[27] MANN K, BAYER A, GLOGER J, et al. Photothermal measurement of absorption and wavefront deformations in fused silica[C]//Laser-Induced Damage in Optical Materials: 2008: volume 7132. International Society for Optics and Photonics, 2008: 71321F.
[28] SALAZAR A, SANCHEZ-LAVEGA A, TERRON J. Effective thermal diffusivity of layered materials measured by modulated photothermal techniques[J]. Journal of applied physics, 1998, 84(6): 3031-3041.
[29] WELSCH E, RISTAU D. Photothermal measurements on optical thin films[J]. Applied Optics, 1995, 34(31): 7239-7253.
[30] DONGMEI B, HUANXIN C, SHANJIAN L, et al. Measurement of thermal diffusivity/thermal contact resistance using laser photothermal method at cryogenic temperatures[J]. Applied Thermal Engineering, 2017, 111: 768-775.
[31] ANGSTRÖM A. XVII. New method of determining the thermal conductibility of bodies[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1863, 25 (166): 130-142.
[32] BODZENTA J, BURAK B, NOWAK M, et al. Measurement of the thermal diffusivity of dental filling materials using modified Ångström’s method[J]. Dental Materials, 2006, 22(7): 617-621.
[33] LOPEZ-BAEZA E, DE LA RUBIA J, GOLDSMID H. Angstrom’s thermal diffusivity method for short samples[J]. Journal of Physics D: Applied Physics, 1987, 20(9): 1156.
[34] ZHU Y. Heat-loss modified Angstrom method for simultaneous measurements of thermal diffusivity and conductivity of graphite sheets: The origins of heat loss in Angstrom method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 784-791.
[35] SZÉKELY V, VAN BIEN T. Fine structure of heat flow path in semiconductor devices: a measurement and identification method[J]. Solid-State Electronics, 1988, 31(9): 1363-1368.
[36] SZÉKELY V. A new evaluation method of thermal transient measurement results[J]. Microelectronics journal, 1997, 28(3): 277-292.
[37] SZALAI A, SZÉKELY V. How do we know if a structure function is correct?[C]//2010 16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, 2010: 1-4.
[38] BIN Z, XUNPING L, SHAOHUA Y, et al. Internal thermal resistance test and analysis of power device based on structure function[C]//2013 14th International Conference on Electronic Packaging Technology. IEEE, 2013: 1082-1085.
[39] SARKANY Z, VASS-VARNAI A, RENCZ M. Investigation of die-attach degradation using power cycling tests[C]//2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013). IEEE, 2013: 780-784.
[40] POPPE A, KOLLÁ E, TÓTH Z, et al. Characterization of heat-sinks of socketable LED modules using thermal transient testing[C]//20th International Workshop on Thermal Investigations of ICs and Systems. IEEE, 2014: 1-5.
[41] KIM T, FUNAKI T. Thermal measurement and analysis of packaged SiC MOSFETs[J]. Thermochimica Acta, 2016, 633: 31-36.
[42] 陈晓玲. 基于数值模拟的高导热材料热物性测试新方法研究[D]. 中南大学, 2008: 47-52.
[43] 王补宣, 韩礼钟, 王维城, 等. 同时测定热绝缘材料 𝛼 和 𝜆 的常功率平面热源法[J]. 工程热物理学报, 1980, 1(1): 80-87.
[44] 杨杰. 平面热源法对建筑保温材料热导率和热扩散率的测试研究[D]. 中南大学, 2014:13-17.
[45] 王雅辉. 热线法测量建筑保温材料热导率和热扩散率的研究[D]. 中南大学, 2014: 23-37.
[46] 周孑民, 张忠霞, 林燕, 等. 常功率平面热源法测定热物性参数的进一步研究[J]. 计量学报, 2007(z1): 4.
[47] 孟飞燕. 保温隔热材料热扩散率和热导率测试技术的研究[D]. 南京理工大学, 2010: 12-14.
[48] 祝渊. 高性能柔性散热材料设计, 制备及应用[J]. 清华大学, 2011: 22-25.
[49] 于帆, 张欣欣. ” 交叉热线” 测量固体材料的热导率: 测温热电偶的影响[J]. 工程科学学报,1998, 020(005): 479-483.
[50] 赵世迁. Hot Disk 法导热系数测定仪的开发[D]. 天津大学, 2009: 43-54.
[51] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(A02): 6.
[52] 陈昭栋. 平面热源法瞬态测量材料热物性的研究[J]. 电子科技大学学报, 2004, 33(5): 5.
[53] 陈清华. 松散煤体热物性测试及其温度场分布规律研究[D]. 安徽理工大学, 2009: 34-37.
[54] 高玉琳, 吕毅军, 陈忠. 结构函数在大功率 LED 热阻测试中的应用[J]. 半导体光电, 2008,29(3): 4.
[55] 庄鹏. 大功率 LED 的热阻测量与结构分析[J]. 现代显示, 2008(8): 5.
[56] 赵学历, 金尚忠, 王乐, 等. 基于结构函数的 LED 热特性测试方法[J]. 光电工程, 2011, 38(009): 115-118.
[57] 肖超, 王立新. 基于结构函数的功率 MOSFET 器件热阻研究[J]. 电子器件, 2012, 35(5): 4.
[58] 董晨曦, 王立新. 基于结构函数的功率 VDMOS 器件热特性分析[J]. 微电子学, 2013(5): 6.
[59] 熊文雯. 基于结构函数的 IGBT 热疲劳寿命预测[D]. 北京工业大学: 4-8.
[60] 段淇耀. 针对多层复合材料热物性参数测试方法的研究[D]. 哈尔滨工业大学, 2019: 5-15.
[61] Convective heat transfer: L.C. Burmeister John Wiley, Chichester, February 1983, 720 pp, ISBN 0471 091413[J]. Applied Ocean Research, 1983: 63-64.
[62] 西格尔. 热辐射传热[M]. 热辐射传热, 1990: 86-89.
[63] 杨福生, 戴先中. 带通信号的采样定理[J]. 信号处理, 1986(1): 60-64.
[64] 江剑平. 半导体激光器[M]. 半导体激光器, 2000: 83-87.
[65] 李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程, 2004,33(3): 4.
[66] 李金学. 10Gbps 光收发模块及其关键技术[D]. 湖北工业大学, 2008: 25-27.
[67] 传输线理论综述[EB/OL]. https://www.docin.com/p-2452087220.html.
[68] 何晴. 高频连接器性能分析[D]. 北京邮电大学, 2011: 8-17.
[69] 秦威. 全固态射频电源系统的分析与研究[D]. 昆明理工大学: 12-18.
[70] 于凤芹. 实用小波分析十讲[M]. 实用小波分析十讲, 2013: 133-145.
[71] MCDONALD J, WEISS N, 麦克唐纳, 等. 实分析教程[M]. 实分析教程, 2013: 63-87.
[72] 李青. 由高斯函数构造具有高阶消失矩的小波函数[J]. 中南民族大学学报: 自然科学版,1994: 23.
[73] ADAMS R A, FOURNIER J J F. Sobolev spaces. 2nd ed[J]. 2003: 12.
[74] 王世一. 数字信号处理 (修订版)[M]. 数字信号处理 (修订版), 2006: 83-87.
[75] 孙曼灵. 环氧树脂应用原理与技术[M]. 环氧树脂应用原理与技术, 2002: 137-154.
修改评论