[1] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical review letters, 1980, 45(6): 494.
[2] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall conductance in a two-dimensional periodic potential[J]. Physical review letters, 1982, 49(6): 405.
[3] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extreme quantum limit[J]. Physical review letters, 1982, 48(22): 1559.
[4] WEN X-G. Topological orders and edge excitations in fractional quantum Hall states[J]. Advances in Physics, 1995, 44(5): 405-473.
[5] NAKAHARA M. Geometry, topology and physics[M]. CRC press, 2018.
[6] HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews of modern physics, 2010, 82(4): 3045.
[7] HALDANE F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly"[J]. Physical review letters, 1988, 61(18): 2015.
[8] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. science, 2004, 306(5696): 666-669.
[9] NETO A C, GUINEA F, PERES N M, et al. The electronic properties of graphene[J]. Reviews of modern physics, 2009, 81(1): 109.
[10] KANE C L, MELE E J. Z 2 topological order and the quantum spin Hall effect[J]. Physical review letters, 2005, 95(14): 146802.
[11] MURAKAMI S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase[J]. New Journal of Physics, 2007, 9(9): 356.
[12] SHENG D, WENG Z, SHENG L, et al. Quantum spin-Hall effect and topologically invariant Chern numbers[J]. Physical review letters, 2006, 97(3): 036808.
[13] HUERTAS-HERNANDO D, GUINEA F, BRATAAS A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps[J]. Physical Review B, 2006, 74(15): 155426.
[14] BOETTGER J, TRICKEY S. First-principles calculation of the spin-orbit splitting in graphene[J]. Physical Review B, 2007, 75(12): 121402.108
[15] BERGMAN D L, LE HUR K. Near-zero modes in condensate phases of the Dirac theory on the honeycomb lattice[J]. Physical Review B, 2009, 79(18): 184520.
[16] BERNEVIG B A, HUGHES T L, ZHANG S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. science, 2006, 314(5806): 1757-1761.
[17] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. science, 2007, 318(5851): 766-770.
[18] ROTH A, BRüNE C, BUHMANN H, et al. Nonlocal transport in the quantum spin Hall state[J]. science, 2009, 325(5938): 294-297.
[19] BüTTIKER M. Absence of backscattering in the quantum Hall effect in multiprobe conductors[J]. Physical Review B, 1988, 38(14): 9375.
[20] LIU C, HUGHES T L, QI X-L, et al. Quantum spin Hall effect in inverted type-II semiconductors[J]. Physical review letters, 2008, 100(23): 236601.
[21] DU L, KNEZ I, SULLIVAN G, et al. Robust helical edge transport in gated InAs/GaSb bilayers[J]. Physical review letters, 2015, 114(9): 096802.
[22] QI X-L, ZHANG S-C. Topological insulators and superconductors[J]. Reviews of modern physics, 2011, 83(4): 1057.
[23] ANDO Y. Topological insulator materials[J]. Journal of the Physical Society of Japan, 2013, 82(10): 102001.
[24] VERGNIORY M, ELCORO L, FELSER C, et al. A complete catalogue of high-quality topological materials[J]. Nature, 2019, 566(7745): 480-485.
[25] TANG F, PO H C, VISHWANATH A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489.
[26] ZHANG T, JIANG Y, SONG Z, et al. Catalogue of topological electronic materials[J]. Nature, 2019, 566(7745): 475-479.
[27] FU L, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302.
[28] NAGAO T, SADOWSKI J, SAITO M, et al. Nanofilm Allotrope and Phase Transformation of Ultrathin Bi Film on S i (111)− 7× 7[J]. Physical review letters, 2004, 93(10): 105501.
[29] WADA M, MURAKAMI S, FREIMUTH F, et al. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films[J]. Physical Review B, 2011, 83(12): 121310.
[30] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190): 970-974.
[31] HSIEH D, XIA Y, QIAN D, et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3[J]. Physical review letters, 2009, 103(14): 146401.
[32] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 398-402.
[33] ZHANG H, LIU C-X, QI X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[34] CHEN Y, ANALYTIS J G, CHU J-H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. science, 2009, 325(5937): 178-181.
[35] HSIEH D, XIA Y, QIAN D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J]. Nature, 2009, 460(7259): 1101-1105.
[36] ROY R. Topological phases and the quantum spin Hall effect in three dimensions[J]. Physical Review B, 2009, 79(19): 195322.
[37] SUZUURA H, ANDO T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice[J]. Physical review letters, 2002, 89(26): 266603.
[38] NOMURA K, KOSHINO M, RYU S. Topological delocalization of two-dimensional massless Dirac fermions[J]. Physical review letters, 2007, 99(14): 146806.
[39] LI C, VAN‘T ERVE O, LI Y, et al. Electrical detection of the helical spin texture in a p-type topological insulator Sb2Te3[J]. Scientific reports, 2016, 6(1): 1-7.
[40] KONG D, CHEN Y, CHA J J, et al. Ambipolar field effect in the ternary topological insulator (BixSb1–x) 2Te3 by composition tuning[J]. Nature nanotechnology, 2011, 6(11): 705-709.
[41] DUAN J, TANG N, HE X, et al. Identification of helicity-dependent photocurrents from topological surface states in Bi2Se3 gated by ionic liquid[J]. Scientific reports, 2014, 4(1): 1-4.
[42] NGABONZIZA P, STEHNO M P, MYOREN H, et al. Gate‐Tunable Transport Properties of In Situ Capped Bi2Te3 Topological Insulator Thin Films[J]. Advanced Electronic Materials, 2016, 2(8): 1600157.
[43] ZHANG T, HA J, LEVY N, et al. Electric-field tuning of the surface band structure of topological insulator Sb 2 Te 3 thin films[J]. Physical review letters, 2013, 111(5): 056803.
[44] WANG Y, XIU F, CHENG L, et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates[J]. Nano letters, 2012, 12(3): 1170-1175.
[45] DZERO M, SUN K, GALITSKI V, et al. Topological kondo insulators[J]. Physical review letters, 2010, 104(10): 106408.
[46] RAGHU S, QI X-L, HONERKAMP C, et al. Topological mott insulators[J]. Physical review letters, 2008, 100(15): 156401.
[47] YU R, ZHANG W, ZHANG H-J, et al. Quantized anomalous Hall effect in magnetic topological insulators[J]. science, 2010, 329(5987): 61-64.
[48] XU S-Y, NEUPANE M, LIU C, et al. Hedgehog spin texture and Berry’s phase tuningin a magnetic topological insulator[J]. Nature Physics, 2012, 8(8): 616-622.
[49] LIU C-X, QI X-L, DAI X, et al. Quantum anomalous Hall effect in Hg 1− y Mn y Te quantum wells[J]. Physical review letters, 2008, 101(14): 146802.
[50] BUDEWITZ A, BENDIAS K, LEUBNER P, et al. Quantum anomalous Hall effect in Mn doped HgTe quantum wells[J]. arXiv preprint arXiv:170605789, 2017
[51] NOMURA K, NAGAOSA N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators[J]. Physical review letters, 2011, 106(16): 166802.
[52] ZHANG S-B, LU H-Z, SHEN S-Q. Edge states and integer quantum Hall effect in topological insulator thin films[J]. Scientific reports, 2015, 5(1): 1-10.
[53] CHANG C-Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. science, 2013, 340(6129): 167-170.
[54] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. science, 2020, 367(6480): 895-900.
[55] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J]. Nature Reviews Physics, 2019, 1(2): 126-143.
[56] CHEN Y, CHU J-H, ANALYTIS J, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator[J]. science, 2010, 329(5992): 659-662.
[57] KHVESHCHENKO D, WIEGMANN P B. Physical realization of the parity anomaly and quantum Hall effect[J]. Physics Letters B, 1989, 225(3): 279-283.
[58] LIU C-X, ZHANG S-C, QI X-L. The quantum anomalous Hall effect: Theory and experiment[J]. Annual Review of Condensed Matter Physics, 2016, 7: 301-321.
[59] QI X-L, WU Y-S, ZHANG S-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors[J]. Physical Review B, 2006, 74(8): 085308.
[60] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. Physical review letters, 2007, 98(10): 106803.
[61] REDLICH A N. Parity violation and gauge noninvariance of the effective gauge field action in three dimensions[J]. Physical Review D, 1984, 29(10): 2366.
[62] DESER S, GRIGUOLO L, SEMINARA D. Gauge invariance, finite temperature, and parity anomaly in D= 3[J]. Physical review letters, 1997, 79(11): 1976.
[63] LIU T, HE J J, NORI F. Majorana corner states in a two-dimensional magnetic topological insulator on a high-temperature superconductor[J]. Physical Review B, 2018, 98(24): 245413.
[64] LI Q, HAN Y, ZHANG K, et al. Multiple Majorana edge modes in magnetic topological insulator–superconductor heterostructures[J]. Physical Review B, 2020, 102(20): 205402.111
[65] PENG Y, XU Y. Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators[J]. Physical Review B, 2019, 99(19): 195431.
[66] XU Y, SONG Z, WANG Z, et al. Higher-order topology of the axion insulator EuIn 2 As 2[J]. Physical review letters, 2019, 122(25): 256402.
[67] MOGI M, KAWAMURA M, TSUKAZAKI A, et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator[J]. Science advances, 2017, 3(10): eaao1669.
[68] LIU C, WANG Y, LI H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator[J]. Nature materials, 2020, 19(5): 522-527.
[69] YU X, KOSHIBAE W, TOKUNAGA Y, et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet[J]. Nature, 2018, 564(7734): 95-98.
[70] QI X-L, HUGHES T L, ZHANG S-C. Topological field theory of time-reversal invariant insulators[J]. Physical Review B, 2008, 78(19): 195424.
[71] QI X-L, LI R, ZANG J, et al. Inducing a magnetic monopole with topological surface states[J]. science, 2009, 323(5918): 1184-1187.
[72] WANG J, LIAN B, QI X-L, et al. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state[J]. Physical Review B, 2015, 92(8): 081107.
[73] MORIMOTO T, FURUSAKI A, NAGAOSA N. Topological magnetoelectric effects in thin films of topological insulators[J]. Physical Review B, 2015, 92(8): 085113.
[74] ESSIN A M, MOORE J E, VANDERBILT D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators[J]. Physical review letters, 2009, 102(14): 146805.
[75] WILCZEK F. Two applications of axion electrodynamics[J]. Physical review letters, 1987, 58(18): 1799.
[76] OKADA Y, DHITAL C, ZHOU W, et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator[J]. Physical review letters, 2011, 106(20): 206805.
[77] CHANG C Z, ZHANG J, LIU M, et al. Thin films of magnetically doped topological insulator with carrier‐independent long‐range ferromagnetic order[J]. Advanced materials, 2013, 25(7): 1065-1070.
[78] YE M, LI W, ZHU S, et al. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb, Bi) 2Te3[J]. Nature communications, 2015, 6(1): 1-7.
[79] FAN Y, KOU X, UPADHYAYA P, et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator[J]. Nature nanotechnology, 2016, 11(4): 352-359.
[80] KIM J, JHI S-H. Magnetic phase transition in Fe-doped topological insulator B i 2 S e 3[J]. Physical Review B, 2015, 92(10): 104405.
[81] LANG M, MONTAZERI M, ONBASLI M C, et al. Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure[J]. Nano letters, 2014, 14(6): 3459-3465.
[82] EREMEEV S, MEN'SHOV V, TUGUSHEV V, et al. Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface[J]. Physical Review B, 2013, 88(14): 144430.
[83] LEE C, KATMIS F, JARILLO-HERRERO P, et al. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet[J]. Nature communications, 2016, 7(1): 1-6.
[84] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Science advances, 2019, 5(6): eaaw5685.
[85] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[86] XU Y, MIOTKOWSKI I, LIU C, et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator[J]. Nature Physics, 2014, 10(12): 956-963.
[87] ZHU T, BISHOP A J, ZHOU T, et al. Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBi2Se4[J]. Nano letters, 2021, 21(12): 5083-5090.
[88] HU C, DING L, GORDON K N, et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13[J]. Science advances, 2020, 6(30): eaba4275.
[89] SESSI P, REIS F, BATHON T, et al. Signatures of Dirac fermion-mediated magnetic order[J]. Nature communications, 2014, 5(1): 1-8.
[90] CHECKELSKY J G, YE J, ONOSE Y, et al. Dirac-fermion-mediated ferromagnetism in a topological insulator[J]. Nature Physics, 2012, 8(10): 729-733.
[91] KOU X, LANG M, FAN Y, et al. Interplay between different magnetisms in Cr-doped topological insulators[J]. ACS Nano, 2013, 7(10): 9205-9212.
[92] LI M, CHANG C-Z, WU L, et al. Experimental verification of the van Vleck nature of long-range ferromagnetic order in the vanadium-doped three-dimensional topological insulator Sb 2 Te 3[J]. Physical review letters, 2015, 114(14): 146802.
[93] KACMAN P. Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures[J]. Semiconductor Science and Technology, 2001, 16(4): R25.
[94] HOR Y, ROUSHAN P, BEIDENKOPF H, et al. Development of ferromagnetism in thedoped topological insulator Bi 2− x Mn x Te 3[J]. Physical Review B, 2010, 81(19): 195203.
[95] LEE I, KIM C K, LEE J, et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx (Bi0. 1Sb0. 9) 2-xTe3[J]. Proceedings of the National Academy of Sciences, 2015, 112(5): 1316-1321.
[96] CHANG C-Z, ZHAO W, KIM D Y, et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator[J]. Nature materials, 2015, 14(5): 473-477.
[97] BESTWICK A, FOX E, KOU X, et al. Precise quantization of the anomalous Hall effect near zero magnetic field[J]. Physical review letters, 2015, 114(18): 187201.
[98] CHANG C-Z, ZHAO W, KIM D Y, et al. Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state[J]. Physical review letters, 2015, 115(5): 057206.
[99] WANG J, LIAN B, ZHANG H, et al. Anomalous edge transport in the quantum anomalous Hall state[J]. Physical review letters, 2013, 111(8): 086803.
[100] WU X, LI J, MA X-M, et al. Distinct topological surface states on the two terminations of MnBi 4 Te 7[J]. Physical Review X, 2020, 10(3): 031013.
[101] MOGI M, YOSHIMI R, TSUKAZAKI A, et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect[J]. Applied Physics Letters, 2015, 107(18): 182401.
[102] WATANABE R, YOSHIMI R, KAWAMURA M, et al. Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure[J]. Applied Physics Letters, 2019, 115(10): 102403.
[103] OU Y, LIU C, JIANG G, et al. Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator[J]. Advanced materials, 2018, 30(1): 1703062.
[104] OTROKOV M M, MENSHCHIKOVA T V, VERGNIORY M G, et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects[J]. 2D Materials, 2017, 4(2): 025082.
[105] LEE D S, KIM T-H, PARK C-H, et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi 2 MnTe 4[J]. CrystEngComm, 2013, 15(27): 5532-5538.
[106] SASS P M, GE W, YAN J, et al. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4[J]. Nano letters, 2020, 20(4): 2609-2614.
[107] OTROKOV M, RUSINOV I P, BLANCO-REY M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi 2 Te 4 films[J]. Physical review letters, 2019, 122(10): 107202.
[108] LI Z, LI J, HE K, et al. Tunable interlayer magnetism and band topology in van der Waals heterostructures of Mn Bi 2 Te 4-family materials[J]. Physical Review B, 2020, 102(8): 081107.
[109] LI J, WANG C, ZHANG Z, et al. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi 2 Te 4[J]. Physical Review B, 2019, 100(12): 121103.
[110] ZEUGNER A, NIETSCHKE F, WOLTER A U, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4[J]. Chemistry of Materials, 2019, 31(8): 2795-2806.
[111] CUI J, SHI M, WANG H, et al. Transport properties of thin flakes of the antiferromagnetic topological insulator MnB i 2 T e 4[J]. Physical Review B, 2019, 99(15): 155125.
[112] YAN J-Q, ZHANG Q, HEITMANN T, et al. Crystal growth and magnetic structure of MnBi 2 Te 4[J]. Physical Review Materials, 2019, 3(6): 064202.
[113] CHEN B, FEI F, ZHANG D, et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes[J]. Nature communications, 2019, 10(1): 1-8.
[114] GONG Y, GUO J, LI J, et al. Experimental realization of an intrinsic magnetic topological insulator[J]. Chinese Physics Letters, 2019, 36(7): 076801.
[115] LEE S H, ZHU Y, WANG Y, et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnB i 2 T e 4[J]. Physical Review Research, 2019, 1(1): 012011.
[116] HOU F, YAO Q, ZHOU C-S, et al. Te-vacancy-induced surface collapse and reconstruction in antiferromagnetic topological insulator MnBi2Te4[J]. ACS Nano, 2020, 14(9): 11262-11272.
[117] HU Y, XU L, SHI M, et al. Universal gapless Dirac cone and tunable topological states in (MnB i 2 T e 4) m (B i 2 T e 3) n heterostructures[J]. Physical Review B, 2020, 101(16): 161113.
[118] ZHONG H, BAO C, WANG H, et al. Light-tunable surface state and hybridization gap in magnetic topological insulator MnBi8Te13[J]. Nano letters, 2021, 21(14): 6080-6086.
[119] DENG H, CHEN Z, WOŁOŚ A, et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice[J]. Nature Physics, 2021, 17(1): 36-42.
[120] VIDAL R C, ZEUGNER A, FACIO J I, et al. Topological electronic structure and intrinsic magnetization in MnBi 4 Te 7: a Bi 2 Te 3 derivative with a periodic Mn sublattice[J]. Physical Review X, 2019, 9(4): 041065.
[121] TIAN S, GAO S, NIE S, et al. Magnetic topological insulator MnBi 6 Te 10 with a zero-field ferromagnetic state and gapped Dirac surface states[J]. Physical Review B,2020, 102(3): 035144.
[122] ROSENBERG G, FRANZ M. Surface magnetic ordering in topological insulators with bulk magnetic dopants[J]. Physical Review B, 2012, 85(19): 195119.
[123] DIETL T, OHNO H. Dilute ferromagnetic semiconductors: Physics and spintronic structures[J]. Reviews of modern physics, 2014, 86(1): 187.
[124] KOU X, FAN Y, LANG M, et al. Magnetic topological insulators and quantum anomalous hall effect[J]. Solid State Communications, 2015, 215: 34-53.
[125] YANKOWITZ M, JUNG J, LAKSONO E, et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure[J]. Nature, 2018, 557(7705): 404-408.
[126] NISHIOKA T, SATO N K. New type of magnetization equipment using a commercial Hall sensor[J]. Journal of Magnetism and Magnetic Materials, 2004, 272: 2305-2306.
[127] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.
[128] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865.
[129] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of chemical physics, 2010, 132(15): 154104.
[130] GE J, LIU Y, LI J, et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels[J]. National science review, 2020, 7(8): 1280-1287.
[131] DING L, HU C, YE F, et al. Crystal and magnetic structures of magnetic topological insulators MnBi 2 Te 4 and MnBi 4 Te 7[J]. Physical Review B, 2020, 101(2): 020412.
[132] YAN J-Q, LIU Y, PARKER D, et al. A-type antiferromagnetic order in MnBi 4 Te 7 and MnBi 6 Te 10 single crystals[J]. Physical Review Materials, 2020, 4(5): 054202.
[133] HU C, GORDON K N, LIU P, et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling[J]. Nature communications, 2020, 11(1): 1-8.
[134] SUN H, XIA B, CHEN Z, et al. Rational design principles of the quantum anomalous Hall effect in superlatticelike magnetic topological insulators[J]. Physical review letters, 2019, 123(9): 096401.
[135] WU J, LIU F, SASASE M, et al. Natural van der Waals heterostructural single crystals with both magnetic and topological properties[J]. Science advances, 2019, 5(11): eaax9989.
[136] SHI M, LEI B, ZHU C, et al. Magnetic and transport properties in the magnetic topological insulators MnB i 2 T e 4 (B i 2 T e 3) n (n= 1, 2)[J]. Physical Review B, 2019, 100(15): 155144.
[137] JIA B, ZHANG S, YING Z, et al. Unconventional anomalous Hall effect in magnetic topological insulator MnBi4Te7 device[J]. Applied Physics Letters, 2021, 118(8):083101.
[138] HU C, LIEN S-W, FENG E, et al. Tuning magnetism and band topology through antisite defects in Sb-doped MnBi 4 Te 7[J]. Physical Review B, 2021, 104(5): 054422.
[139] DU M H, YAN J, COOPER V R, et al. Tuning Fermi levels in intrinsic antiferromagnetic topological insulators MnBi2Te4 and MnBi4Te7 by defect engineering and chemical doping[J]. Advanced Functional Materials, 2021, 31(3): 2006516.
[140] KLIMOVSKIKH I I, OTROKOV M M, ESTYUNIN D, et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3) m topological insulators family[J]. npj Quantum Materials, 2020, 5(1): 1-9.
[141] JO N H, WANG L-L, SLAGER R-J, et al. Intrinsic axion insulating behavior in antiferromagnetic MnBi 6 Te 10[J]. Physical Review B, 2020, 102(4): 045130.
[142] XIE H, FEI F, FANG F, et al. Charge carrier mediation and ferromagnetism induced in MnBi6Te10 magnetic topological insulators by antimony doping[J]. Journal of Physics D: Applied Physics, 2021, 55(10): 104002.
[143] KE F, CHEN Y, YIN K, et al. Large bandgap of pressurized trilayer graphene[J]. Proceedings of the National Academy of Sciences, 2019, 116(19): 9186-9190.
[144] ZHAO Z, ZHANG H, YUAN H, et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide[J]. Nature communications, 2015, 6(1): 1-8.
[145] RIFLIKOVá M, MARTOŇáK R, TOSATTI E. Pressure-induced gap closing and metallization of Mo Se 2 and Mo Te 2[J]. Physical Review B, 2014, 90(3): 035108.
[146] RODIN A, CARVALHO A, NETO A C. Strain-induced gap modification in black phosphorus[J]. Physical review letters, 2014, 112(17): 176801.
[147] KIRSHENBAUM K, SYERS P, HOPE A, et al. Pressure-induced unconventional superconducting phase in the topological insulator Bi 2 Se 3[J]. Physical review letters, 2013, 111(8): 087001.
[148] ZHANG C, SUN L, CHEN Z, et al. Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi 2 Te 3 single crystals[J]. Physical Review B, 2011, 83(14): 140504.
[149] LI T, JIANG S, SIVADAS N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3[J]. Nature materials, 2019, 18(12): 1303-1308.
[150] SONG T, FEI Z, YANKOWITZ M, et al. Switching 2D magnetic states via pressure tuning of layer stacking[J]. Nature materials, 2019, 18(12): 1298-1302.
[151] YANKOWITZ M, CHEN S, POLSHYN H, et al. Tuning superconductivity in twisted bilayer graphene[J]. science, 2019, 363(6431): 1059-1064.
[152] FüLöP B, MáRFFY A, ZIHLMANN S, et al. Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure[J]. npj 2D Materials andApplications, 2021, 5(1): 1-6.
[153] CHEN K, WANG B, YAN J-Q, et al. Suppression of the antiferromagnetic metallic state in the pressurized MnB i 2 T e 4 single crystal[J]. Physical Review Materials, 2019, 3(9): 094201.
[154] ZHAO Z, HU C, KAVNER A, et al. Phase Transition and Raman Evolution in Pressurized Antiferromagnetism van der Waals Topological Insulator; proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO), F, 2020 [C]. IEEE.
[155] PEI C, XIA Y, WU J, et al. Pressure-induced topological and structural phase transitions in an antiferromagnetic topological insulator[J]. Chinese Physics Letters, 2020, 37(6): 066401.
[156] GUO W-T, HUANG L, YANG Y, et al. Pressure-induced topological quantum phase transition in the magnetic topological insulator MnBi2Te4[J]. New Journal of Physics, 2021, 23(8): 083030.
[157] YIN Y, MA X, YAN D, et al. Pressure-driven electronic and structural phase transition in intrinsic magnetic topological insulator Mn Sb 2 Te 4[J]. Physical Review B, 2021, 104(17): 174114.
[158] XU Z, YE M, LI J, et al. Hydrostatic pressure-induced magnetic and topological phase transitions in the MnBi 2 Te 4 family of materials[J]. Physical Review B, 2022, 105(8): 085129.
[159] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J]. Journal of Alloys and Compounds, 2019, 789: 443-450.
[160] GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites [La, M (II)] Mn O 3[J]. Physical Review, 1955, 100(2): 564.
[161] ANDERSON P W. New approach to the theory of superexchange interactions[J]. Physical Review, 1959, 115(1): 2.
[162] TURNER A M, ZHANG Y, MONG R S, et al. Quantized response and topology of magnetic insulators with inversion symmetry[J]. Physical Review B, 2012, 85(16): 165120.
[163] ONO S, WATANABE H. Unified understanding of symmetry indicators for all internal symmetry classes[J]. Physical Review B, 2018, 98(11): 115150.
[164] LU R, SUN H, KUMAR S, et al. Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected surface[J]. Physical Review X, 2021, 11(1): 011039.
[165] YAN J-Q, OKAMOTO S, MCGUIRE M A, et al. Evolution of structural, magnetic, and transport properties in MnBi 2− x Sb x Te 4[J]. Physical Review B, 2019, 100(10): 104409.
[166] CHEN B, WANG D, JIANG Z, et al. Coexistence of ferromagnetism and topology by charge carrier engineering in the intrinsic magnetic topological insulator Mn Bi 4 Te 7[J]. Physical Review B, 2021, 104(7): 075134.
[167] LIU Y, WANG L-L, ZHENG Q, et al. Site mixing for engineering magnetic topological insulators[J]. Physical Review X, 2021, 11(2): 021033.
[168] YUAN Y, WANG X, LI H, et al. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy[J]. Nano letters, 2020, 20(5): 3271-3277.
[169] DING L, HU C, FENG E, et al. Neutron diffraction study of magnetism in van der Waals layered MnBi2n Te3n+ 1[J]. Journal of Physics D: Applied Physics, 2021, 54(17): 174003.
[170] ZHANG J, CHANG C-Z, TANG P, et al. Topology-driven magnetic quantum phase transition in topological insulators[J]. science, 2013, 339(6127): 1582-1586.
[171] ZHENG G, WANG M, ZHU X, et al. Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation[J]. Nature communications, 2021, 12(1): 1-7.
[172] KURUMAJI T, NAKAJIMA T, HIRSCHBERGER M, et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet[J]. science, 2019, 365(6456): 914-918.
[173] NEUBAUER A, PFLEIDERER C, BINZ B, et al. Topological Hall effect in the A phase of MnSi[J]. Physical review letters, 2009, 102(18): 186602.
[174] LIU C, ZANG Y, RUAN W, et al. Dimensional crossover-induced topological Hall effect in a magnetic topological insulator[J]. Physical review letters, 2017, 119(17): 176809.
[175] SüRGERS C, FISCHER G, WINKEL P, et al. Large topological Hall effect in the non-collinear phase of an antiferromagnet[J]. Nature communications, 2014, 5(1): 1-8.
[176] DENISOV K, ROZHANSKY I, AVERKIEV N, et al. General theory of the topological Hall effect in systems with chiral spin textures[J]. Physical Review B, 2018, 98(19): 195439.
[177] SKOROPATA E, NICHOLS J, OK J M, et al. Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO3/SrIrO3 heterostructures[J]. Science advances, 2020, 6(27): eaaz3902.
[178] SHAO Q, LIU Y, YU G, et al. Topological Hall effect at above room temperature in heterostructures composed of a magnetic insulator and a heavy metal[J]. Nature Electronics, 2019, 2(5): 182-186.
[179] GAREL T, DONIACH S. Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet[J]. Physical Review B, 1982, 26(1): 325.
[180] OKUBO T, CHUNG S, KAWAMURA H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields[J]. Physical review letters, 2012, 108(1): 017206.
[181] WANG L, FENG Q, LEE H G, et al. Controllable thickness inhomogeneity and berry curvature engineering of anomalous Hall effect in SrRuO3 ultrathin films[J]. Nano letters, 2020, 20(4): 2468-2477.
[182] ZHANG S, WANG R, WANG X, et al. Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device[J]. Nano letters, 2019, 20(1): 709-714.
[183] JIA B, ZHANG S, YING Z, et al. Unconventional anomalous Hall effect in magnetic topological insulator MnBi4Te7 device[J]. Applied Physics Letters, 2021, 118(8): 083101.
[184] LIU N, TENG J, LI Y. Two-component anomalous Hall effect in a magnetically doped topological insulator[J]. Nature communications, 2018, 9(1): 1-8.
[185] DENG H, CHEN Z, WOŁOŚ A, et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice[J]. Nature Physics, 2021, 17(1): 36-42.
[186] TAI L, LI J, CHONG S K, et al. Distinguishing two-component anomalous Hall effect from topological Hall effect in magnetic topological insulator MnBi2Te4[J]. arXiv preprint arXiv:210309878, 2021
[187] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous hall effect[J]. Reviews of modern physics, 2010, 82(2): 1539.
[188] ROUT P K, MADDURI P P, MANNA S K, et al. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn 3 Sn[J]. Physical Review B, 2019, 99(9): 094430.
修改评论