[1] KITAEV A Y. Quantum computations: algorithms and error correction[J/OL]. Russian Mathematical Surveys, 1997, 52(6): 1191-1249. https://doi.org/10.1070/rm1997v052n06abeh002155.
[2] KITAEV A. Fault-tolerant quantum computation by anyons[J/OL]. Annals of Physics, 2003,303(1): 2-30. https://www.sciencedirect.com/science/article/pii/S0003491602000180. DOI:https://doi.org/10.1016/S0003-4916(02)00018-0.
[3] NAYAK C, SIMON S H, STERN A, et al. Non-abelian anyons and topological quantum computation[J/OL]. Rev. Mod. Phys., 2008, 80: 1083-1159. https://link.aps.org/doi/10.1103/RevModPhys.80.1083.
[4] WEN X G. Colloquium: Zoo of quantum-topological phases of matter[J]. Rev. Mod. Phys.,2017, 89: 041004.
[5] XI W, ZHANG Z H, GU Z C, et al. Classification of topological phases in one dimensionalinteracting non-hermitian systems and emergent unitarity[J]. Science Bulletin, 2021, 66(17):1731-1739.
[6] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination ofthe fine-structure constant based on quantized hall resistance[J]. Phys. Rev. Lett., 1980, 45:494-497.
[7] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extremequantum limit[J]. Phys. Rev. Lett., 1982, 48: 1559-1562.
[8] LAUGHLIN R B. Anomalous quantum hall effect: An incompressible quantum fluid withfractionally charged excitations[J]. Phys. Rev. Lett., 1983, 50: 1395-1398.
[9] KALMEYER V, LAUGHLIN R B. Equivalence of the resonating-valence-bond and fractionalquantum hall states[J]. Phys. Rev. Lett., 1987, 59: 2095-2098.
[10] KANE C L, MELE E J. Quantum spin hall effect in graphene[J]. Phys. Rev. Lett., 2005, 95:226801.
[11] KANE C L, MELE E J. 𝑍2 topological order and the quantum spin hall effect[J]. Phys. Rev.Lett., 2005, 95: 146802.
[12] HALDANE F. Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification withthe o(3) nonlinear sigma model[J]. Physics Letters A, 1983, 93(9): 464-468.
[13] AFFLECK I, KENNEDY T, LIEB E H, et al. Valence bond ground states in isotropic quantumantiferromagnets[M]//Condensed matter physics and exactly soluble models. Springer, 1988:253-304.
[14] GU Z C, WEN X G. Tensor-entanglement-filtering renormalization approach and symmetryprotected topological order[J]. Phys. Rev. B, 2009, 80: 155131.30参考文献
[15] CHEN X, GU Z C, WEN X G. Complete classification of one-dimensional gapped quantumphases in interacting spin systems[J]. Phys. Rev. B, 2011, 84: 235128.
[16] SCHUCH N, PÉREZ-GARCÍA D, CIRAC I. Classifying quantum phases using matrix productstates and projected entangled pair states[J/OL]. Phys. Rev. B, 2011, 84: 165139. https://link.aps.org/doi/10.1103/PhysRevB.84.165139.
[17] CHEN X, GU Z C, LIU Z X, et al. Symmetry protected topological orders and the groupcohomology of their symmetry group[J]. Phys. Rev. B, 2013, 87: 155114.
[18] LU Y M, VISHWANATH A. Theory and classification of interacting integer topological phasesin two dimensions: A chern-simons approach[J]. Phys. Rev. B, 2012, 86: 125119.
[19] KONG L, WEN X G. Braided fusion categories, gravitational anomalies, and the mathematicalframework for topological orders in any dimensions[J]. arXiv preprint arXiv:1405.5858, 2014.
[20] SCHNYDER A P, RYU S, FURUSAKI A, et al. Classification of topological insulators andsuperconductors in three spatial dimensions[J/OL]. Phys. Rev. B, 2008, 78: 195125. https://link.aps.org/doi/10.1103/PhysRevB.78.195125.
[21] KITAEV A. Periodic table for topological insulators and superconductors[J]. AIP conferenceproceedings, 2009, 1134(1): 22-30.
[22] GU Z C, WEN X G. Symmetry-protected topological orders for interacting fermions: Fermionictopological nonlinear 𝜎 models and a special group supercohomology theory[J]. Phys. Rev. B,2014, 90: 115141.
[23] WANG Q R, GU Z C. Towards a complete classification of symmetry-protected topologicalphases for interacting fermions in three dimensions and a general group supercohomology theory[J]. Phys. Rev. X, 2018, 8: 011055.
[24] KAPUSTIN A, THORNGREN R, TURZILLO A, et al. Fermionic symmetry protected topological phases and cobordisms[J]. Journal of High Energy Physics, 2015, 2015(12): 1-21.
[25] GU Z C, LEVIN M. Effect of interactions on two-dimensional fermionic symmetry-protectedtopological phases with 𝑍2 symmetry[J]. Phys. Rev. B, 2014, 89: 201113.
[26] BARKESHLI M, BONDERSON P, CHENG M, et al. Symmetry fractionalization, defects, andgauging of topological phases[J]. Phys. Rev. B, 2019, 100: 115147.
[27] ZHAN X, XIAO L, BIAN Z, et al. Detecting topological invariants in nonunitary discrete-timequantum walks[J]. Phys. Rev. Lett., 2017, 119: 130501.
[28] WEIMANN S, KREMER M, PLOTNIK Y, et al. Topologically protected bound states in photonic parity–time-symmetric crystals[J]. Nature materials, 2017, 16(4): 433-438.
[29] XIAO L, DENG T, WANG K, et al. Non-hermitian bulk–boundary correspondence in quantumdynamics[J]. Nature Physics, 2020, 16(7): 761-766.
[30] WANG B, CHEN T, ZHANG X. Observation of novel robust edge states without bulk-boundarycorrespondence in non-hermitian quantum walks[J]. arXiv preprint arXiv:1906.06676, 2019.
[31] HELBIG T, HOFMANN T, IMHOF S, et al. Generalized bulk–boundary correspondence innon-hermitian topolectrical circuits[J]. Nature Physics, 2020, 16(7): 747-750.
[32] LEE T E. Anomalous edge state in a non-hermitian lattice[J]. Phys. Rev. Lett., 2016, 116:133903.31参考文献
[33] JIANG H, YANG C, CHEN S. Topological invariants and phase diagrams for one-dimensionaltwo-band non-hermitian systems without chiral symmetry[J]. Phys. Rev. A, 2018, 98: 052116.
[34] SHEN H, ZHEN B, FU L. Topological band theory for non-hermitian hamiltonians[J]. Phys.Rev. Lett., 2018, 120: 146402.
[35] YAO S, WANG Z. Edge states and topological invariants of non-hermitian systems[J]. Phys.Rev. Lett., 2018, 121: 086803.
[36] FU Y, HU J, WAN S. Non-hermitian second-order skin and topological modes[J]. Phys. Rev.B, 2021, 103: 045420.
[37] YANG Z, ZHANG K, FANG C, et al. Non-hermitian bulk-boundary correspondence and auxiliary generalized brillouin zone theory[J]. Phys. Rev. Lett., 2020, 125: 226402.
[38] KAWABATA K, SHIOZAKI K, UEDA M, et al. Symmetry and topology in non-hermitianphysics[J]. Phys. Rev. X, 2019, 9: 041015.
[39] ZHOU H, LEE J Y. Periodic table for topological bands with non-hermitian symmetries[J].Phys. Rev. B, 2019, 99: 235112.
[40] PARTO M, WITTEK S, HODAEI H, et al. Edge-mode lasing in 1d topological active arrays[J]. Phys. Rev. Lett., 2018, 120: 113901.
[41] CHANG P Y, YOU J S, WEN X, et al. Entanglement spectrum and entropy in topologicalnon-hermitian systems and nonunitary conformal field theory[J]. Phys. Rev. Research, 2020, 2:033069.
[42] LEE C H. Exceptional boundary states and negative entanglement entropy[J]. arXiv preprintarXiv:2011.09505, 2020.
[43] YOSHIDA T, KUDO K, HATSUGAI Y. Non-hermitian fractional quantum hall states[J]. Scientific reports, 2019, 9(1): 1-8.
[44] GUO C X, WANG X R, WANG C, et al. Non-hermitian dynamic strings and anomalous topological degeneracy on a non-hermitian toric-code model with parity-time symmetry[J]. Phys.Rev. B, 2020, 101: 144439.
[45] LOOTENS L, VANHOVE R, HAEGEMAN J, et al. Galois conjugated tensor fusion categoriesand nonunitary conformal field theory[J]. Phys. Rev. Lett., 2020, 124: 120601.
[46] MOSTAFAZADEH A. Pseudo-hermitian representation of quantum mechanics[J]. International Journal of Geometric Methods in Modern Physics, 2010, 07(07): 1191-1306.
[47] QI X L, WU Y S, ZHANG S C. General theorem relating the bulk topological number to edgestates in two-dimensional insulators[J]. Phys. Rev. B, 2006, 74: 045125.
[48] CHEN X, GU Z C, LIU Z X, et al. Symmetry-protected topological orders in interacting bosonicsystems[J]. Science, 2012, 338(6114): 1604-1606.
[49] DIJKGRAAF R, WITTEN E. Topological gauge theories and group cohomology[J/OL]. Communications in Mathematical Physics, 1990, 129(2): 393-429. https://doi.org/10.1007/BF02096988.
[50] BRYLINSKI J L. Differentiable cohomology of gauge groups[J]. 2000.
[51] ATIYAH M. Topological quantum field theories[J]. Publications mathématiques de l’IHÉS,1988, 68(1): 175-186.32参考文献
[52] SCHOMMER-PRIES C J. The classification of two-dimensional extended topological fieldtheories[J]. 2011.
[53] FUKUMA M, HOSONO S, KAWAI H. Lattice topological field theory in two dimensions[J/OL]. Communications in Mathematical Physics, 1994, 161(1): 157-175. DOI: 10.1007/bf02099416.
[54] TURAEV V G. Homotopy quantum field theory[M]. Zürich, Switzerland: European Mathematical Society, 2010.33致 谢致
修改评论