中文版 | English
题名

NF-YA/CDCA8轴通过调控MAPK信号通路促进肝癌的进展

其他题名
NF-YA/CDCA8 axis promotes HCC progression by regulating MAPK signaling pathway
姓名
姓名拼音
HE Yu
学号
11930143
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张健
导师单位
南方科技大学医学院
论文答辩日期
2022-04-27
论文提交日期
2022-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       肝癌是最常见的消化道癌症之一。高达三分之二的患者首次被诊断即为癌症中晚期。患者即使接受手术,术后也很快复发和转移。因此,深入研究肝癌的发生发展和转移机制,探索肝癌恶性演进的标志物是当前肝癌研究领域的重点。
       细胞分裂周期相关8(CDCA8)基因是脊椎动物染色体乘客复合物的重要组成部分,它在多种肿瘤中高表达并促进肿瘤进展。然而,目前CDCA8在肝癌中的作用机制尚不完全清楚。本研究旨在通过分析CDCA8的表达与肝癌细胞增殖和转移的关系,揭示CDCA8在肝癌中的作用,并探索及其上下游信号通路。我们在收集的临床标本中验证了CDCA8在肝癌组织中的表达显著高于癌旁组织。通过TCGA数据库我们发现CDCA8在肝癌中高表达,并且CDCA8的高表达与肝癌患者不良预后显著相关。免疫组织化学染色实验证实CDCA8的高表达也提示与患者较短的总生存期和无病生存期相关。通过CCK8细胞增殖实验、克隆形成实验、细胞迁移和侵袭实验,我们发现敲低CDCA8的表达可以抑制PLC/PRF/5和HepG2等肝癌细胞的体外增殖和浸润。裸鼠皮下瘤以及尾静脉肺转移瘤模型实验结果提示CDCA8促进肝癌细胞在裸鼠体内的生长和肺部转移。
       在此基础上,针对敲低CDCA8的细胞系进行RNA测序,结果提示CDCA8多个下游潜在靶点。细胞系验证得到NECAP2、TPM3和USP13是CDCA8关系最为密切相关的下游分子,数据库分析提示这三个基因与患者不良预后呈显著相关; 富集分析显示,CDCA8的表达可能影响MAPK信号通路。蛋白印迹实验进一步验证了CDCA8促进MEK/ERK的磷酸化发挥促癌效应。此外,我们通过生信分析以及实验验证转录因子NF-YA可能是调控CDCA8的上游基因,更为重要的是,干扰CDCA8可以逆转NF-YA的促癌作用。综上,本研究发现NF-YA/CDCA8信号轴通过激化MEK/ERK磷酸化促进肝癌增殖转移。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-49.
[2] XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]. Chin Med J (Engl), 2022, 135(5): 584-90.
[3] LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma [J]. Nat Rev Dis Primers, 2021, 7(1): 6.
[4] VILLANUEVA A. Hepatocellular Carcinoma [J]. N Engl J Med, 2019, 380(15): 1450-62.
[5] CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020 [J]. Chin Med J (Engl), 2021, 134(7): 783-91.
[6] OTT J J, STEVENS G A, GROEGER J, et al. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity [J]. Vaccine, 2012, 30(12): 2212-9.
[7] LIN D, YANG H I, NGUYEN N, et al. Reduction of chronic hepatitis B-related hepatocellular carcinoma with anti-viral therapy, including low risk patients [J]. Aliment Pharmacol Ther, 2016, 44(8): 846-55.
[8] LOK A S, MCMAHON B J, BROWN R S, JR., et al. Antiviral therapy for chronic hepatitis B viral infection in adults: A systematic review and meta-analysis [J]. Hepatology, 2016, 63(1): 284-306.
[9] CHUNG R T, BAUMERT T F. Curing chronic hepatitis C--the arc of a medical triumph [J]. N Engl J Med, 2014, 370(17): 1576-8.
[10] WIRTH T C, MANNS M P. The impact of the revolution in hepatitis C treatment on hepatocellular carcinoma [J]. Ann Oncol, 2016, 27(8): 1467-74.
[11] MESSINA J P, HUMPHREYS I, FLAXMAN A, et al. Global distribution and prevalence of hepatitis C virus genotypes [J]. Hepatology, 2015, 61(1): 77-87.
[12] CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association [J]. Hepatology, 2012, 55(6): 2005-23.
[13] BELLENTANI S. The epidemiology of non-alcoholic fatty liver disease [J]. Liver Int, 2017, 37 Suppl 1: 81-4.
[14] RINELLA M E. Nonalcoholic fatty liver disease: a systematic review [J]. JAMA, 2015, 313(22): 2263-73.
[15] VERNON G, BARANOVA A, YOUNOSSI Z M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults [J]. Aliment Pharmacol Ther, 2011, 34(3): 274-85.
[16] MUIR K, HAZIM A, HE Y, et al. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma [J]. Cancer Res, 2013, 73(15): 4722-31.
[17] SALOMAO M, YU W M, BROWN R S, JR., et al. Steatohepatitic hepatocellular carcinoma (SH-HCC): a distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH [J]. Am J Surg Pathol, 2010, 34(11): 1630-6.
[18] CUADRADO A, ORIVE A, GARCIA-SUAREZ C, et al. Non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma [J]. Obes Surg, 2005, 15(3): 442-6.
[19] POPOV V B, LIM J K. Treatment of Nonalcoholic Fatty Liver Disease: The Role of Medical, Surgical, and Endoscopic Weight Loss [J]. J Clin Transl Hepatol, 2015, 3(3): 230-8.
[20] CZAJA A J. Diagnosis and Management of Autoimmune Hepatitis: Current Status and Future Directions [J]. Gut Liver, 2016, 10(2): 177-203.
[21] LOHSE A W, MIELI-VERGANI G. Autoimmune hepatitis [J]. J Hepatol, 2011, 55(1): 171-82.
[22] WANG Z, SHENG L, YANG Y, et al. The Management of Autoimmune Hepatitis Patients with Decompensated Cirrhosis: Real-World Experience and a Comprehensive Review [J]. Clin Rev Allergy Immunol, 2017, 52(3): 424-35.
[23] PARK S Z, NAGORNEY D M, CZAJA A J. Hepatocellular carcinoma in autoimmune hepatitis [J]. Dig Dis Sci, 2000, 45(10): 1944-8.
[24] HRAD V, ABEBE Y, ALI S H, et al. Risk and Surveillance of Cancers in Primary Biliary Tract Disease [J]. Gastroenterol Res Pract, 2016, 2016: 3432640.
[25] ADAMS P C, DEUGNIER Y, MOIRAND R, et al. The relationship between iron overload, clinical symptoms, and age in 410 patients with genetic hemochromatosis [J]. Hepatology, 1997, 25(1): 162-6.
[26] STEINBERG K K, COGSWELL M E, CHANG J C, et al. Prevalence of C282Y and H63D mutations in the hemochromatosis (HFE) gene in the United States [J]. JAMA, 2001, 285(17): 2216-22.
[27] ELMBERG M, HULTCRANTZ R, EKBOM A, et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives [J]. Gastroenterology, 2003, 125(6): 1733-41.
[28] CABALLERIA L, PARES A, CASTELLS A, et al. Hepatocellular carcinoma in primary biliary cirrhosis: similar incidence to that in hepatitis C virus-related cirrhosis [J]. Am J Gastroenterol, 2001, 96(4): 1160-3.
[29] CHALASANI N P, HAYASHI P H, BONKOVSKY H L, et al. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury [J]. Am J Gastroenterol, 2014, 109(7): 950-66; quiz 67.
[30] XU R, HAJDU C H. Wilson disease and hepatocellular carcinoma [J]. Gastroenterol Hepatol (N Y), 2008, 4(6): 438-9.
[31] LIU C Y, CHEN K F, CHEN P J. Treatment of Liver Cancer [J]. Cold Spring Harb Perspect Med, 2015, 5(9): a021535.
[32] CHEUNG T T, POON R T, YUEN W K, et al. Long-term survival analysis of pure laparoscopic versus open hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a single-center experience [J]. Ann Surg, 2013, 257(3): 506-11.
[33] ABDALLA E K, HICKS M E, VAUTHEY J N. Portal vein embolization: rationale, technique and future prospects [J]. Br J Surg, 2001, 88(2): 165-75.
[34] ABULKHIR A, LIMONGELLI P, HEALEY A J, et al. Preoperative portal vein embolization for major liver resection: a meta-analysis [J]. Ann Surg, 2008, 247(1): 49-57.
[35] PALAVECINO M, CHUN Y S, MADOFF D C, et al. Major hepatic resection for hepatocellular carcinoma with or without portal vein embolization: Perioperative outcome and survival [J]. Surgery, 2009, 145(4): 399-405.
[36] POON R T, FAN S T, LO C M, et al. Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation [J]. Ann Surg, 2002, 235(3): 373-82.
[37] CHAN A C, CHAN S C, CHOK K S, et al. Treatment strategy for recurrent hepatocellular carcinoma: salvage transplantation, repeated resection, or radiofrequency ablation? [J]. Liver Transpl, 2013, 19(4): 411-9.
[38] MAZZAFERRO V, REGALIA E, DOCI R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis [J]. N Engl J Med, 1996, 334(11): 693-9.
[39] YAO F Y, FERRELL L, BASS N M, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival [J]. Hepatology, 2001, 33(6): 1394-403.
[40] DUFFY J P, VARDANIAN A, BENJAMIN E, et al. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA [J]. Ann Surg, 2007, 246(3): 502-9; discussion 9-11.
[41] HERRERO J I, SANGRO B, PARDO F, et al. Liver transplantation in patients with hepatocellular carcinoma across Milan criteria [J]. Liver Transpl, 2008, 14(3): 272-8.
[42] MAZZAFERRO V. Results of liver transplantation: with or without Milan criteria? [J]. Liver Transpl, 2007, 13(11 Suppl 2): S44-7.
[43] SUGAWARA Y, TAMURA S, MAKUUCHI M. Living donor liver transplantation for hepatocellular carcinoma: Tokyo University series [J]. Dig Dis, 2007, 25(4): 310-2.
[44] LEE S G, MOON D B. Living donor liver transplantation for hepatocellular carcinoma [J]. Recent Results Cancer Res, 2013, 190: 165-79.
[45] HACKL C, SCHLITT H J, KIRCHNER G I, et al. Liver transplantation for malignancy: current treatment strategies and future perspectives [J]. World J Gastroenterol, 2014, 20(18): 5331-44.
[46] RAHMAN A, ASSIFI M M, PEDROSO F E, et al. Is resection equivalent to transplantation for early cirrhotic patients with hepatocellular carcinoma? A meta-analysis [J]. J Gastrointest Surg, 2012, 16(10): 1897-909.
[47] CHANG J F, CHEN P J, SZE D Y, et al. Oncolytic virotherapy for advanced liver tumours [J]. J Cell Mol Med, 2009, 13(7): 1238-47.
[48] RUSSELL S J, PENG K W, BELL J C. Oncolytic virotherapy [J]. Nat Biotechnol, 2012, 30(7): 658-70.
[49] MOEHLER M, GOEPFERT K, HEINRICH B, et al. Oncolytic virotherapy as emerging immunotherapeutic modality: potential of parvovirus h-1 [J]. Front Oncol, 2014, 4: 92.
[50] LLOVET J M, REAL M I, MONTANA X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial [J]. Lancet, 2002, 359(9319): 1734-9.
[51] SANGRO B, D'AVOLA D, INARRAIRAEGUI M, et al. Transarterial therapies for hepatocellular carcinoma [J]. Expert Opin Pharmacother, 2011, 12(7): 1057-73.
[52] CHAN A O, YUEN M F, HUI C K, et al. A prospective study regarding the complications of transcatheter intraarterial lipiodol chemoembolization in patients with hepatocellular carcinoma [J]. Cancer, 2002, 94(6): 1747-52.
[53] TAKAYASU K, ARII S, IKAI I, et al. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients [J]. Gastroenterology, 2006, 131(2): 461-9.
[54] JEON S H, PARK K S, KIM Y H, et al. [Incidence and risk factors of acute hepatic failure after transcatheter arterial chemoembolization for hepatocellular carcinoma] [J]. Korean J Gastroenterol, 2007, 50(3): 176-82.
[55] RAOUL J L, SANGRO B, FORNER A, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization [J]. Cancer Treat Rev, 2011, 37(3): 212-20.
[56] LEUNG D A, GOIN J E, SICKLES C, et al. Determinants of postembolization syndrome after hepatic chemoembolization [J]. J Vasc Interv Radiol, 2001, 12(3): 321-6.
[57] HODI F S, O'DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma [J]. N Engl J Med, 2010, 363(8): 711-23.
[58] KEIR M E, BUTTE M J, FREEMAN G J, et al. PD-1 and its ligands in tolerance and immunity [J]. Annu Rev Immunol, 2008, 26: 677-704.
[59] ZOU W, CHEN L. Inhibitory B7-family molecules in the tumour microenvironment [J]. Nat Rev Immunol, 2008, 8(6): 467-77.
[60] SZNOL M, CHEN L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer [J]. Clin Cancer Res, 2013, 19(5): 1021-34.
[61] GAO Q, WANG X Y, QIU S J, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma [J]. Clin Cancer Res, 2009, 15(3): 971-9.
[62] TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-54.
[63] JANSSEN A, VAN DER BURG M, SZUHAI K, et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations [J]. Science, 2011, 333(6051): 1895-8.
[64] FUJIWARA T, BANDI M, NITTA M, et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells [J]. Nature, 2005, 437(7061): 1043-7.
[65] GLOVER D M, LEIBOWITZ M H, MCLEAN D A, et al. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles [J]. Cell, 1995, 81(1): 95-105.
[66] CARMENA M, RUCHAUD S, EARNSHAW W C. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins [J]. Curr Opin Cell Biol, 2009, 21(6): 796-805.
[67] COOKE C A, HECK M M, EARNSHAW W C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis [J]. J Cell Biol, 1987, 105(5): 2053-67.
[68] AINSZTEIN A M, KANDELS-LEWIS S E, MACKAY A M, et al. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1 [J]. J Cell Biol, 1998, 143(7): 1763-74.
[69] VADER G, KAUW J J, MEDEMA R H, et al. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody [J]. EMBO Rep, 2006, 7(1): 85-92.
[70] JEYAPRAKASH A A, KLEIN U R, LINDNER D, et al. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together [J]. Cell, 2007, 131(2): 271-85.
[71] KLEIN U R, NIGG E A, GRUNEBERG U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP [J]. Mol Biol Cell, 2006, 17(6): 2547-58.
[72] YUE Z, CARVALHO A, XU Z, et al. Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line [J]. J Cell Biol, 2008, 183(2): 279-96.
[73] AMBROSINI G, ADIDA C, ALTIERI D C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma [J]. Nat Med, 1997, 3(8): 917-21.
[74] YUE Z, CARVALHO A, XU Z, et al. Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line [J]. J Cell Biol, 2008, 183(2): 279-96.
[75] JEYAPRAKASH A A, BASQUIN C, JAYACHANDRAN U, et al. Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex [J]. Structure, 2011, 19(11): 1625-34.
[76] VONG Q P, CAO K, LI H Y, et al. Chromosome alignment and segregation regulated by ubiquitination of survivin [J]. Science, 2005, 310(5753): 1499-504.
[77] GASSMANN R, CARVALHO A, HENZING A J, et al. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle [J]. J Cell Biol, 2004, 166(2): 179-91.
[78] NAKAJIMA Y, TYERS R G, WONG C C, et al. Nbl1p: a Borealin/Dasra/CSC-1-like protein essential for Aurora/Ipl1 complex function and integrity in Saccharomyces cerevisiae [J]. Mol Biol Cell, 2009, 20(6): 1772-84.
[79] BOHNERT K A, CHEN J S, CLIFFORD D M, et al. A link between aurora kinase and Clp1/Cdc14 regulation uncovered by the identification of a fission yeast borealin-like protein [J]. Mol Biol Cell, 2009, 20(16): 3646-59.
[80] HAYAMA S, DAIGO Y, YAMABUKI T, et al. Phosphorylation and activation of cell division cycle associated 8 by aurora kinase B plays a significant role in human lung carcinogenesis [J]. Cancer Res, 2007, 67(9): 4113-22.
[81] TSUKAHARA T, TANNO Y, WATANABE Y. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation [J]. Nature, 2010, 467(7316): 719-23.
[82] WALKER M G. Drug target discovery by gene expression analysis: cell cycle genes [J]. Curr Cancer Drug Targets, 2001, 1(1): 73-83.
[83] DELUCA J G, MOREE B, HICKEY J M, et al. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells [J]. J Cell Biol, 2002, 159(4): 549-55.
[84] LIU D, DING X, DU J, et al. Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment [J]. J Biol Chem, 2007, 282(29): 21415-24.
[85] HAYAMA S, DAIGO Y, KATO T, et al. Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis [J]. Cancer Res, 2006, 66(21): 10339-48.
[86] WURZENBERGER C, HELD M, LAMPSON M A, et al. Sds22 and Repo-Man stabilize chromosome segregation by counteracting Aurora B on anaphase kinetochores [J]. J Cell Biol, 2012, 198(2): 173-83.
[87] TAYLOR C M, WANG Q, ROSA B A, et al. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways [J]. PLoS Pathog, 2013, 9(8): e1003505.
[88] THADANI R, UHLMANN F, HEEGER S. Condensin, chromatin crossbarring and chromosome condensation [J]. Curr Biol, 2012, 22(23): R1012-21.
[89] PENG A, LEWELLYN A L, SCHIEMANN W P, et al. Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation [J]. Curr Biol, 2010, 20(5): 387-96.
[90] RYU B, KIM D S, DELUCA A M, et al. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression [J]. PLoS One, 2007, 2(7): e594.
[91] UCHIDA F, UZAWA K, KASAMATSU A, et al. Overexpression of CDCA2 in human squamous cell carcinoma: correlation with prevention of G1 phase arrest and apoptosis [J]. PLoS One, 2013, 8(2): e56381.
[92] SHI R, ZHANG C, WU Y, et al. CDCA2 promotes lung adenocarcinoma cell proliferation and predicts poor survival in lung adenocarcinoma patients [J]. Oncotarget, 2017, 8(12): 19768-79.
[93] JIN W H, ZHOU A T, CHEN J J, et al. CDCA2 promotes proliferation and migration of melanoma by upregulating CCAD1 [J]. Eur Rev Med Pharmacol Sci, 2020, 24(12): 6858-63.
[94] SMITH A, SIMANSKI S, FALLAHI M, et al. Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry [J]. Cell Cycle, 2007, 6(22): 2795-9.
[95] YOSHIDA K. Cell-cycle-dependent regulation of the human and mouse Tome-1 promoters [J]. FEBS Lett, 2005, 579(6): 1488-92.
[96] LIM H H, SURANA U. Tome-1, wee1, and the onset of mitosis: coupled destruction for timely entry [J]. Mol Cell, 2003, 11(4): 845-6.
[97] KIM Y J, BAHK Y Y. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners [J]. Biochem Biophys Res Commun, 2014, 448(2): 189-94.
[98] ZHENG N, SCHULMAN B A, SONG L, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex [J]. Nature, 2002, 416(6882): 703-9.
[99] UCHIDA F, UZAWA K, KASAMATSU A, et al. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest [J]. BMC Cancer, 2012, 12: 321.
[100] XU Y, WU X, LI F, et al. CDCA4, a downstream gene of the Nrf2 signaling pathway, regulates cell proliferation and apoptosis in the MCF7/ADM human breast cancer cell line [J]. Mol Med Rep, 2018, 17(1): 1507-12.
[101] GU Y, LI J, GUO D, et al. Identification of 13 Key Genes Correlated With Progression and Prognosis in Hepatocellular Carcinoma by Weighted Gene Co-expression Network Analysis [J]. Front Genet, 2020, 11: 153.
[102] HAYASHI R, GOTO Y, IKEDA R, et al. CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation [J]. J Biol Chem, 2006, 281(47): 35633-48.
[103] ZHANG N, PATI D. Sororin is a master regulator of sister chromatid cohesion and separation [J]. Cell Cycle, 2012, 11(11): 2073-83.
[104] ZHANG N, PATI D. Handcuff for sisters: a new model for sister chromatid cohesion [J]. Cell Cycle, 2009, 8(3): 399-402.
[105] ZHANG N, PANIGRAHI A K, MAO Q, et al. Interaction of Sororin protein with polo-like kinase 1 mediates resolution of chromosomal arm cohesion [J]. J Biol Chem, 2011, 286(48): 41826-37.
[106] YEH C R, HSU I, SONG W, et al. Fibroblast ERalpha promotes bladder cancer invasion via increasing the CCL1 and IL-6 signals in the tumor microenvironment [J]. Am J Cancer Res, 2015, 5(3): 1146-57.
[107] HAN Q, LI C, CAO Y, et al. CBX2 is a functional target of miRNA let-7a and acts as a tumor promoter in osteosarcoma [J]. Cancer Med, 2019, 8(8): 3981-91.
[108] CHO H, LIM B J, KANG E S, et al. Molecular characterization of a new ovarian cancer cell line, YDOV-151, established from mucinous cystadenocarcinoma [J]. Tohoku J Exp Med, 2009, 218(2): 129-39.
[109] OSTHUS R C, KARIM B, PRESCOTT J E, et al. The Myc target gene JPO1/CDCA7 is frequently overexpressed in human tumors and has limited transforming activity in vivo [J]. Cancer Res, 2005, 65(13): 5620-7.
[110] NARAYAN G, BOURDON V, CHAGANTI S, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes [J]. Genes Chromosomes Cancer, 2007, 46(4): 373-84.
[111] JIAO D C, LU Z D, QIAO J H, et al. Expression of CDCA8 correlates closely with FOXM1 in breast cancer: public microarray data analysis and immunohistochemical study [J]. Neoplasma, 2015, 62(3): 464-9.
[112] CHANG J L, CHEN T H, WANG C F, et al. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer [J]. Exp Cell Res, 2006, 312(7): 962-73.
[113] GU Y, LU L, WU L, et al. Identification of prognostic genes in kidney renal clear cell carcinoma by RNAseq data analysis [J]. Mol Med Rep, 2017, 15(4): 1661-7.
[114] HAYAMA S, DAIGO Y, YAMABUKI T, et al. Phosphorylation and activation of cell division cycle associated 8 by aurora kinase B plays a significant role in human lung carcinogenesis [J]. Cancer Res, 2007, 67(9): 4113-22.
[115] WANG Y, ZHAO Z, BAO X, et al. Borealin/Dasra B is overexpressed in colorectal cancers and contributes to proliferation of cancer cells [J]. Med Oncol, 2014, 31(11): 248.
[116] CHANG J L, CHEN T H, WANG C F, et al. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer [J]. Exp Cell Res, 2006, 312(7): 962-73.
[117] BI Y, CHEN S, JIANG J, et al. CDCA8 expression and its clinical relevance in patients with bladder cancer [J]. Medicine (Baltimore), 2018, 97(34): e11899.
[118] HOMMES D W, PEPPELENBOSCH M P, VAN DEVENTER S J. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets [J]. Gut, 2003, 52(1): 144-51.
[119] LIU F, YANG X, GENG M, et al. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy [J]. Acta Pharm Sin B, 2018, 8(4): 552-62.
[120] CARGNELLO M, ROUX P P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases [J]. Microbiol Mol Biol Rev, 2011, 75(1): 50-83.
[121] HOBBS G A, DER C J, ROSSMAN K L. RAS isoforms and mutations in cancer at a glance [J]. J Cell Sci, 2016, 129(7): 1287-92.
[122] DONG C, DAVIS R J, FLAVELL R A. MAP kinases in the immune response [J]. Annu Rev Immunol, 2002, 20: 55-72.
[123] YAP J L, WORLIKAR S, MACKERELL A D, JR., et al. Small-molecule inhibitors of the ERK signaling pathway: Towards novel anticancer therapeutics [J]. ChemMedChem, 2011, 6(1): 38-48.
[124] BARNES P J, KARIN M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases [J]. N Engl J Med, 1997, 336(15): 1066-71.
[125] SEN R, BALTIMORE D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences [J]. Cell, 1986, 46(5): 705-16.
[126] GHOSH S, KARIN M. Missing pieces in the NF-kappaB puzzle [J]. Cell, 2002, 109 Suppl: S81-96.
[127] MAEDA S, KAMATA H, LUO J L, et al. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis [J]. Cell, 2005, 121(7): 977-90.
[128] WEGENKA U M, BUSCHMANN J, LUTTICKEN C, et al. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level [J]. Mol Cell Biol, 1993, 13(1): 276-88.
[129] ZHONG Z, WEN Z, DARNELL J E, JR. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6 [J]. Science, 1994, 264(5155): 95-8.
[130] TAKEDA K, AKIRA S. STAT family of transcription factors in cytokine-mediated biological responses [J]. Cytokine Growth Factor Rev, 2000, 11(3): 199-207.
[131] HIRANO T, ISHIHARA K, HIBI M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors [J]. Oncogene, 2000, 19(21): 2548-56.
[132] HE G, YU G Y, TEMKIN V, et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation [J]. Cancer Cell, 2010, 17(3): 286-97.
[133] CALVISI D F, LADU S, GORDEN A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC [J]. Gastroenterology, 2006, 130(4): 1117-28.

所在学位评定分委会
医学院
国内图书分类号
Q291
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343159
专题南方科技大学医学院
推荐引用方式
GB/T 7714
贺宇. NF-YA/CDCA8轴通过调控MAPK信号通路促进肝癌的进展[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930143-贺宇-南方科技大学医学(5649KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贺宇]的文章
百度学术
百度学术中相似的文章
[贺宇]的文章
必应学术
必应学术中相似的文章
[贺宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。