中文版 | English
题名

基于有机场效应晶体管结构的红外光电探测器的研究

其他题名
INFRARED PHOTODETECTOR BASED ON ORGANIC FIELD EFFECT TRANSISTOR
姓名
姓名拼音
LIU Yuyang
学号
12032295
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王佳宏
导师单位
中科院深圳先进技术研究院
论文答辩日期
2022-05-12
论文提交日期
2022-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

具有近红外响应的探测器目前被广泛应用于红外成像、医学检测和自
动化等领域。故越来越多的新型材料被用于开发有机红外探测器,期望实
现良好的近红外探测。PbS 胶体量子点是一种带隙可调节的半导体材料,
在红外探测领域引起了极大的关注。但由于存在光生载流子的寿命短,传
输距离有限等问题。对此,不仅需要选用合适的有机材料来匹配 PbS 量子
点的能级,也需要设计合理的器件结构来提升有机探测器的性能。本论文
以 OFETs 为器件结构基础,构建了多种具有良好红外光探测的有机光敏
场效应晶体管。具体的研究内容如下: 
选用经典的 p 型有机半导体材料 P3HT 和最佳受体 PC61BM,制备了具
有近红外探测能力的光敏场效应晶体管。通过构建体异质结晶体管、设计
合适的场效应晶体管结构、优化器件制备工艺等方式探索器件的红外光响
应性能。制备了相应的体异质结三元探测器(PbS/P3HT:PC61BM)以及分
层光敏探测器(PbS/P3HT) 。所得器件对于白光有良好的光响应特性,探
测红外光波长的范围可至 1100 nm,且所探测的最弱光强可达 160 μW/cm2,
响应的光响应电流可达 10-8 A。 
更加深入的探索了基于有机材料 PDPPBTT 与 PbS 量子点耦合的场效
应短波红外探测晶体管。通过有机材料 PDPPBTT 提供高迁移率的电荷传输
路径,实现在短波红外光(1 -1.5 μm)照明时,从 PbS 量子点到有机半导
体材料的空穴注入过程。混合型光电探测器中的光响应速度(<60 ms)相
比于以 PbS 量子点作为晶体管沟道层固有的慢响应行为有着显著提高。混
合晶体管可以检测到 50 μW/cm2(1440 nm)的最弱红外光强,光电流可达
800 nA,实现了低检测线、高灵敏度的短波红外检测。为短波红外光谱中
提供高性能检测提供了新的解决方案,极大地优化了红外传感器的设计。 
 
 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] WU Z, ZHAI Y, KIM H, et al. Emerging design and characterization guidelines for polymer-based infrared photodetectors[J]. Accounts of chemical research, 2018, 51(12): 3144-3153.

[2] YUAN H C, SHIN J, QIN G, et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes[J]. Applied physics letters, 2009, 94(1): 013102.

[3] DONG H, ZHU H, MENG Q, et al. Organic photoresponse materials and devices[J]. Chemical society reviews, 2012, 41(5): 1754-1808.

[4] GUO Y, YU G, LIU Y. Functional organic field‐effect transistors[J]. Advanced materials, 2010, 22(40): 4427-4447.

[5] YAO Y, LIANG Y, SHROTRIYA V, et al. Plastic near‐infrared photodetectors utilizing low band gap polymer[J]. Advanced materials, 2007, 19(22): 3979-3983.

[6] AZZELLINO G, GRIMOLDI A, BINDA M, et al. Fully inkjet ‐ printed organic photodetectors with high quantum yield[J]. Advanced materials, 2013, 25(47): 6829-6833.

[7] BUCHELE P, RICHTER M, TEDDE S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors[J]. Nature photonics, 2015, 9(12): 843-848.

[8] MANNA E, XIAO T, SHINAR J, et al. Organic photodetectors in analytical applications[J]. Electronics, 2015, 4(3): 688-722.

[9] MILLIRON D J, ALIVISATOS A P, PITOIS C, et al. Electroactive surfactant designed to mediate electron transfer between CdSe nanocrystals and organic semiconductors[J]. Advanced materials, 2003, 15(1): 58-61.

[10] GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

[11] HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging[J]. Nature biomedical engineering, 2017, 12(1): 218-230.

[12] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced materials, 2013, 25(31): 4267-4295.

[13] BRAGA D, HOROWITZ G. High‐performance organic field‐effect transistors[J]. Advanced materials, 2009, 21(14‐15): 1473-1486.

[14] ZHANG X H, DOMERCQ B, WANG X, et al. High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD)[J]. Organic electronics, 2007, 8(6): 718-726.

[15] 李东伟. 基于场效应晶体管结构的多功能有机光电器件研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018.

[16] JENA D, KONAR A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering[J]. Physical review letters, 2007, 98(13): 136805.

[17] ZAUMSEIL J, SIRRINGHAUS H. Electron and ambipolar transport in organic field-effect transistors[J]. Chemical reviews, 2007, 107(4): 1296-1323.

[18] ORTIZ-CONDE A, SANCHEZ F J G, LIOU J J, et al. A review of recent MOSFET threshold voltage extraction methods[J]. Microelectronics reliability, 2002, 42(4-5): 583-596.

[19] LONG M, WANG Y, WANG P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS nano, 2019, 13(2): 2511-2519.

[20] SIEGMUND B, MISCHOK A, BENDUHN J, et al. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption[J]. Nature communications, 2017, 8(1): 54-60.

[21] AMIRI M, ALIZADEH N. Highly photosensitive near infrared photodetector based on polypyrrole nanoparticle incorporated with CdS quantum dots[J]. Materials science in semiconductor processing, 2020, 111: 104964.

[22] LUO P, ZHUGE F, Wang F, et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm[J]. ACS nano, 2019, 13(8): 9028-9037.

[23] HADFIELD R H. Single-photon detectors for optical quantum information applications[J]. Nature photonics, 2009, 3(12): 696-705.

[24] GAO Y, YI Y, WANG X, et al. A Novel Hybrid‐Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection[J]. Advanced materials, 2019, 31(16): 1900763.

[25] DU L, LUO X, ZHAO F, et al. Toward facile broadband high photoresponse of fullerene based phototransistor from the ultraviolet to the near-infrared region[J]. Carbon, 2016, 96: 685-694.

[26] PENG Y, LV W, YAO B, et al. Improved performance of photosensitive field-effect transistors based on palladium phthalocyanine by utilizing Al as source and drain electrodes[J]. IEEE , 2013, 60(3): 1208-1212.

[27] ROGALSKI A, MARTYNIUK P, KOPYTKO M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied sciences, 2021, 11(2): 501.

[28] NAKOTTE T, LUO H, PIETRYGA J. PbE (E= S, Se) colloidal quantum dot-layered 2D material hybrid photodetectors[J]. Nanomaterials, 2020, 10(1): 172.

[29] GUPTA A, SAKTHIVEL T, Seal S. Recent development in 2D materials beyond graphene[J]. Progress in materials science, 2015, 73: 44-126.

[30] MARTYNIUK P, ANTOSZEWSKI J, MARTYNIUK M, et al. New concepts in infrared photodetector designs[J]. Applied physics reviews, 2014, 1(4): 041102.

[31] LEDOUX I, BADAN J, ZYSS J, et al. Generation of high-peak-power tunable infrared femtosecond pulses in an organic crystal: application to time resolution of weak infrared signals[J]. Josab, 1987, 4(6): 987-997.

[32] HUANG S, PENG B,CHAN P K L. Ambipolar Organic Field‐Effect Transistors Based on a Dual‐Function, Ultrathin and Highly Crystalline 2, 9‐didecyldinaphtho

[2, 3-b: 2′, 3′-f] thieno

[3, 2-b] thiophene (C10-DNTT) Layer[J]. Advanced electronic materials, 2017, 3(12): 1700268.

[33] BRONSTEIN H, CHEN Z, ASHRAF R S, et al. Thieno

[3,2-b] thiophene − diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices[J]. Journal of the american chemical society, 2011, 133(10): 3272-3275.

[34] MURGATROYED P N. Theory of space-charge-limited current enhanced by Frenkel effect[J]. Journal of physics, 1970, 3(2): 151.

[35] ZAINI M S, YING CHYI LIEW J, AIANG AHMAD S A, et al. Quantum confinement effect and photoenhancement of photoluminescence of PbS and PbS/MnS quantum dots[J]. Applied sciences, 2020, 10(18): 6282.

[36] TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nature materials, 2011, 10(10): 765-771.

[37] 张可欣,李庚伟,杨少延,等. n-GaN 上 Au/Zr 和 Au/Ti 金属电极的界面反应和金属间互扩散行为对比研究[J].材料导报,2020(21): 127-141

[38] DENBAARS S P, FEEZELLD, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta materialia, 2013, 61(3): 945-951.

[39] JI D, LI T, LIU J, et al. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays[J]. Nature communications, 2019, 10(1): 78-86.

[40] GARCIA-BELMONTE G, BOIX PP, BISQUERT J, et al. Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy[J]. Solar energy materials and solar cells, 2010, 94(2): 366-375.

[41] WU Z, YAO W, LONDON A E, et al. Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes[J]. ACS applied materials & interfaces, 2017, 9(2): 1654-1660.

[42] ZIMMERMAN J D, DIEV V V, HANSON K, et al. Porphyrin‐Tape/C60 Organic Photodetectors with 6.5% External Quantum Efficiency in the Near Infrared[J]. Advanced materials, 2010, 22(25): 2780-2783.

[43] KUMAR M, BHATT V, ABHYANKR A C, et al. Multifunctional dumbbell-shaped ZnO based temperature-dependent UV photodetection and selective H2 gas detection[J]. International journal of hydrogen energy, 2020, 45(29): 15011-15025.

[44] KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection[J]. Nature nanotechnology, 2010, 5(6): 391-400.

[45] XIA F, MUELLER T, GOLIZADEH-MOJARAD R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano letters, 2009, 9(3): 1039-1044.

[46] DAS S, CHOI J Y, ALFORD T L. P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer[J]. Solar energy materials and solar cells, 2015, 133: 255-259.

[47] DANG M T, HIRSCH L, WANTZ G. P3HT:PCBM, best seller in polymer photovoltaic research[J]. 2011:3597-3602.

[48] SHAO S, LIU J, ZHANG J, et al. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly (3-hexylthiophene): fullerene derivative solar cells[J]. ACS applied materials & interfaces, 2012, 4(10): 5704-5710.

[49] LIAO M, WANG X, TERAJI T, et al. Light intensity dependence of photocurrent gain in single-crystal diamond detectors[J]. Physical review , 2010, 81(3): 033304.

[50] MARSH R A, HODGKISS J M, ALBERT-SEIFRIED S, et al. Effect of annealing on P3HT: PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy[J]. Nano letters, 2010, 10(3): 923-930.

[51] LEE J M, CHO I T, LEE J H, et al. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors[J]. Applied physics letters, 2008, 93(9): 093504.

[52] JEONG K S, TANG J, LIU H, et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics[J]. ACS nano, 2012, 6(1): 89-99.

[53] HWANG D K, LEE Y T, LEE H S, et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain[J]. NPG Asia materials, 2016, 8(1): e233-e233.

[54] CAO Y, STAVRINADIS A, LASANTA T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature energy, 2016, 1(4): 1-6.

[55] KOLEILAT G I, LEVINA L, SHUKLA H, et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots[J]. ACS nano, 2008, 2(5): 833-840.

[56] CHOI H T, KANG J H, AHN J, et al. Zero-dimensional PbS quantum dot–InGaZnO film heterostructure for short-wave infrared flat-panel imager[J]. ACS photonics, 2020, 7(8): 1932-1941.

[57] RAUCH T, BOBERLM, TEDDE S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature photonics, 2009, 3(6): 332-336.

[58] MINKEVICIUS L, TAMOSIUNAS V, KOJELIS M, et al. Influence of field effects on the performance of InGaAs-based terahertz radiation detectors[J]. Journal of infrared, millimeter, and terahertz waves, 2017, 38(6): 689-707.

[59] YU C, LI X, YANG B, et al. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays[J]. Infrared physics & technology, 2017, 85: 74-80.

[60] SARMAH S, DAS M, SARKAR D. Ageing mediated silicon suboxide interlayer growth in porous silicon: p-Si heterostructured metal-semiconductor-metal device for enhanced UV-visible photodetection[J]. Thin solid films, 2021, 738: 138962.

[61] KLEM E J D, GREGORY C, TEMPLE D, et al. PbS colloidal quantum dot photodiodes for low-cost SWIR sensing[C].International society for optics and photonics, 2015, 9451: 945104.

[62] ZENG W, SHU L, LI Q, et al. Fiber ‐ based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced materials, 2014, 26(31): 5310-5336.

[63] GAO Y, GE Y, WANG X, et al. Ultrathin and Ultrasensitive Direct X‐ray Detector Based on Heterojunction Phototransistors[J]. Advanced materials, 2021, 33(32): 2101717.

[64] CHOW P C Y, MATSUHISA N, ZALAR P, et al. Dual-gate organic phototransistor with high-gain and linear photoresponse[J]. Nature communications, 2018, 9(1): 45-54.

[65] BAEG K J, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Advanced materials, 2013, 25(31): 4267-4295.

[66] XING S, WANG H, KONG T, et al. Realization of performance enhancement in ternary polymer solar cells by broad absorption, efficient energy transfer, and balanced charge carrier mobility[J]. IEEE journal of photovoltaics, 2017, 7(4): 1058-1064.

[67] JASIENIAK J, CALFANO M, WATKINS S E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals[J]. ACS nano, 2011, 5(7): 5888-5902.

[68] TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nature materials, 2011, 10(10): 765-771.

[69] WANG Y, LIAO Q, SHE D, et al. Modulation of binary neuroplasticity in a heterojunction-based ambipolar transistor[J]. ACS applied materials & interfaces, 2020, 12(13): 15370-15379.

[70] SCHEELE M, HANIFI D, ZHEREBETSKYY D, et al. PbS nanoparticles capped with tetrathiafulvalenetetracarboxylate: utilizing energy level alignment for efficient carrier transport[J]. ACS nano, 2014, 8(3): 2532-2540.

[71] WU T, AHMADI M, HU B. Giant current amplification induced by ion migration in perovskite single crystal photodetectors[J]. Journal of materials chemistry , 2018, 6(30): 8042-8050.

[72] HU L, HUANG S, PATTERSON R, et al. Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications[J]. Journal of materials chemistry , 2019, 7(15): 4497-4502.

[73] DENG J, ZONG L, ZHU M, et al. MoS2/HfO2/Silicon ‐ On‐ Insulator Dual ‐Photogating Transistor with Ambipolar Photoresponsivity for High‐Resolution Light Wavelength Detection[J]. Advanced functional materials, 2019, 29(46): 1906242.

[74] XIE C, MAK C, TAO X, et al. Photodetectors based on two‐dimensional layered materials beyond graphene[J]. Advanced functional materials, 2017, 27(19): 1603886.

[75] CHEN Y, WU X, CHU Y, et al. Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure[J]. Nano-micro letters, 2018, 10(4): 57-66.

[76] NIE R, DENG X, FENG L, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias[J]. Small, 2017, 13(24): 1603260.

[77] HAN J, LUO S, YIN X, et al. Hybrid PbS Quantum‐Dot‐in‐Perovskite for High‐Efficiency Perovskite Solar Cell[J]. Small, 2018, 14(31): 1801016.

[78] WANG Y, CHEN C, ZOU T, et al. Spin‐On‐Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Active ‐Matrix Near‐Infrared Imaging[J]. Advanced materials technologies, 2020, 5(1): 1900752.

 

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343162
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
刘宇阳. 基于有机场效应晶体管结构的红外光电探测器的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032295-刘宇阳-中国科学院深圳(3884KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘宇阳]的文章
百度学术
百度学术中相似的文章
[刘宇阳]的文章
必应学术
必应学术中相似的文章
[刘宇阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。