[1] WANG Y, YANG L, SHI X, et al. Flexible Thermoelectric Materials and Generators: Challenges and Innovations[J]. Advanced Materials, 2019, 31(29): 1807916.1-1807916.47.
[2] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105-114.
[3] 申利梅,陈焕新,汤魁,等.基于热电冷却的集成散热装置的性能优化分析[J].低温 工程,2011(01):35-39.
[4] YI Z, SHIXU Z, GONGPING LI. A review of radioisotope batteries[J]. Chinese Science Bulletin, 2017, 62(17):1831-1845.
[5] ZHU L, TAN H, YU J. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications [J]. Energy Conversion and Management: 2013, 76:685-690.
[6] SHEN L, CHEN H, XIAO F, et al. The practical performance forecast and analysis of thermoelectric module from macro to micro [J]. Energy Conversion and Management: 2015, 100:23-29.
[7] 张亚旭,刘紫烟.荧光 PCR 扩增相关技术[J].中国生物化学与分子生物学 报,2021,37(07):890-899.
[8] 高志威. PCR 温度控制系统[D].西安:西安理工大学,2020.
[9] ROWE D M. Thermoelectrics Handbook[M]. The United States of Americal: CRC Press, 1995:10-90.
[10] ZHU TJ, LIU YT, Fu CG, et al. Compromise and Synergy in High-Efficiency Thermoelectric Materials[J]. Advanced Materials, 2017, 29(14):1605884.1- 1605884.26.
[11] TAN GJ, ZHAO LD, KANAATZIDIS M G. Rationally Designing High- Performance Bulk Thermoelectric Materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149.
[12] YING PJ, LIU XH, FU CG, et al. High Performance α-MgAgSb Thermoelectric Materials for Low Temperature Power Generation[J]. Chemistry of Materials, 2015, 27(3):909-913.
[13] LIU ZH, WANG YH, MAO J, et al. Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron-Phonon Coupling[J]. Advanced Energy Materials, 2016, 6(7):1502269.1-1502269.11.
[14] ZHAO HZH, SUI JH, TANG ZJ, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7:97-103.
[15] BOSCHKER J E, WANG R N, CALARCO, et al. GeTe: a simple compound blessed with a plethora of properties[J]. CrystEngComm, 2017, 19(36):5324-5335.
[16] LI J, ZHANG XY, CHEN ZW et al. Low-Symmetry Rhombohedral GeTe Thermoelectrics[J]. Joule, 2018, 2(5):976-987.
[17] LI J, ZHANG XY, LIN SQ, et a. Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying[J]. Chemistry of Materials, 2017, 29(2): 605- 611.
[18] HU X, JOOD P, OHTA M, et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules[J]. Energy & Environmental Science, 2016, 9(2):517-529.
[19] LALONDE A D, PEI Y, WANG H, et al. Lead telluride alloy thermoelectrics[J]. Materials Today, 2011, 14(11):526-532.
[20] NOLAS G S, SHARP J, GOLDSMID J. Thermoelectrics: basic principles and new materials developments [M]. Springer Science & Business Media, 2013.
[21] NAKAJIMA S. The crystal structure of Bi2Te3−xSex [J]. Journal of Physics and Chemistry of Solids: 1963, 24(3):479-485.
[22] LI X, CHEN Y, HAO F, et al. Research on bismuth telluride based thermoelectric semiconductor crystals [J]. Materials China:2007, 270-278.
[23] POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science, 2008, 320(5876):634-638.
[24] LAN Y, POUDEL B, MA Y, et al. Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride[J]. Nano Letters, 2009, 9(4):1419- 1422.
[25] KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for highperformance bulk thermoelectrics[J]. Science, 2015, 348(6230):109-113.
[26] PAN Y, AYDEMIR U, GROVOGUI J A, et al. Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency[J]. Advanced Materials, 2018, 30(34):1802016.1-1802016.7.
[27] ZHU B, ZHONG YH, XIAO YW, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulkn-type Bi2Te2.4Se0.6via its liquid state treatment[J]. Nano Energy, 2017, 42:8-16.
[28] ZHU B, ZHONG YH, XIAO YW, et al. Enhanced thermoelectric properties of n- type direction solidified Bi2Te2.7Se0.3 alloys by manipulating its liquid state[J]. Scripta Materialia, 2018, 146:192-195.
[29] ZHU B, LIU XX, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy & Environmental Science, 2020,7(13):2106-2114.
[30] ZHANG T, ZHANG QS, JIANG J, et al. Enhanced thermoelectric performance in p- type BiSbTe bulk alloy with nanoinclusion of ZnAlO[J]. Applied Physics Letters, 2011, 98(2):022104.1-022104.3.
[31] LI JH, TAN Q, LI JF, et al. BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties[J]. Advanced Functional Materials, 2013, 23(35):4317-4323.
[32] FARAH M, El M, HIRA K A, et al. Review: The effect of different nanofifiller materials on the thermoelectric behavior of bismuth telluride[J]. Materials & Design, 2021, 209:109974.1-109974.15.
[33] ZHANG Q, X Ai, WANG W, et al. Preparation of 1-d/3-d structured agnws/Bi2Te3 nanocomposites with enhanced thermoelectric properties[J]. Acta Materialia, 2014, 73:37-47.
[34] MADAVALI B, LEE C H, KIM H S, et al. Investigation of microstructure and thermoelectric properties of p-type BiSbTe /zno composites[J]. International Journal of Applied Ceramic Technology, 2017, 15(1):125-131.
[35] LI Y, ZHAO Q, WANG YG, et al. Synthesis and characterization of Bi2Te3/ polyaniline composites[J]. Materials Science in Semiconductor Processing, 2011, 14:219-222.
[36] KIM K T, CHOI S Y, SHIN E H, et al. The influence of cnts on the thermoelectric properties of a cnt/Bi2Te3 composite[J]. Carbon, 2013, 52:541-549.
[37] CHEN WY, SHI XL, ZOU J, et al. Thermoelectric Coolers: Progress, Challenges, and Opportunities[J]. Small Methods, 2022, 6(2):2101235.1-2101235.21.
[38] ZHENG Y, SHI XL, YUAN H, et al. A Synergy of Strain Loading and Laser Radiation in Determining the High-Performing Electrical Transports in the Single Cu-Doped SnSe Microbelt[J]. Materials Today Physics, 2020, 13:100198.1- 100198.9.
[39] DING J, ZHAO W, JIN W, et al. Advanced Thermoelectric Materials for Flexible Cooling Application[J]. Advanced Functional Materials, 2021, 31(20):2010695.
[40] ASWAL D K, BASU R, SINGH A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects[J]. Energy Conversion and Management, 2016, 114:50-67.
[41] KISHORE R A, NOZARIASBMARZ A, POUDEL B, et al. Ultra-high performance wearable thermoelectric coolers with less materials[J]. Nature Communications, 2019, 10:1765.1-1765.13.
[42] PAWEL Z, PRZEMYSLAW B, ECKHARD M. Validation of commercial Bi2Te3- based thermoelectric generator modules for application as metrological reference samples[J].Measurement, 2021, 177:109247.1-109247.13.
[43] YANG G, SANG L, MITCHELL D R G, et al. Enhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategy[J]. Chemical Engineering Journal, 2022, 428:131205.1- 131205.9.
[44] TAN M, SHI X, LIU W, et al. Synergistic Texturing and Bi/Sb‐Te Antisite Doping Secure High Thermoelectric Performance in Bi0.5Sb1.5Te3‐Based Thin Films[J]. Advanced Energy Materials, 2021, 11(40):2102578.1-2102578.8.
[45] FU L, LEE K H, KIM S I, et al. Hidden role of intrinsic Sb-rich nano-precipitates for high-performance Bi2-Sb Te3 thermoelectric alloys[J]. Acta Materialia, 2021, 215:117058.1-117058.11.
[46] HONG M, CHEN ZG, YANG L, et al. Achieving zT > 2 in p-Type AgSbTe2−x Sex Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults[J]. Advanced Energy Materials, 2018, 8(9):1702333.1-1702333.7.
[47] XING T, SONG Q, QIU P, et al. Superior performance and high service stability for GeTe-based thermoelectric compounds[J]. National Science Review, 2019, 6(5): 944-954.
[48] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390):778-783.
[49] PEI YZ, LALONDE A D, SNYDER G J, et al. High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe[J]. Advanced Energy Materials, 2012, 2(6):670-675.
[50] DI C, XU W, ZHU D, et al. Organic thermoelectrics for green energy[J]. National Science Review, 2016, 3(3):269-271.
[51] ZHOU W, FAN Q, ZHANG Q, et al. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture[J]. Nature Communications, 2017, 8(1):14886-14886.
[52] WU J, SUN Y, XU W, et al. Investigating thermoelectric properties of doped polyaniline nanowires[J]. Synthetic Metals, 2014, 189:177-182.
[53] WANG H, YU C. Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration[J]. Joule, 2019, 3(1):53-80.
[54] DING Y, QIU Y, CAI K, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator.[J]. Nature Communications, 2019, 10:841.1-841.7.
[55] LIANG J, WANG T, QIU P, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices[J]. Energy & Environmental Science, 2019, 12(10):2983-2990.
[56] CHOI H, KIMY J, SONG J, et al. UV‐Curable Silver Electrode for Screen‐Printed Thermoelectric Generator[J]. Advanced Functional Materials, 2019, 29(20):1901505.1-1901505.6.
[57] QIU J, YAN Y, LUO T, et al. 3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance[J]. Energy & Environmental Science, 2019, 12(10):3106-3117.
[58] KIM F, KWON B, EOM Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks[J]. Nature Energy, 2018, 3(4): 301- 309.
[59] BUBNOVA O, KHAN Z U, MALTI A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)[J]. Nature Materials, 2011, 10(6):429-433.
[60] ASTRAIN D E, VIAN J, DOMINGUEZ M. Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation [J]. Applied Thermal Engineering, 2003, 23(17):2183-2200.
[61] DU CY, WEN CD. Experimental investigation and numerical analysis for onestage thermoelectric cooler considering Thomson effect[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24):4875-4884.
[62] HUANG MJ, YEN RH, WANG AB. The influence of the Thomson effect on the performance of a thermoelectric cooler [J]. International Journal of Heat and Mass Transfer, 2005, 48(2):413-418.
[63] SNYDER G J, LIM J R, HUANG C K, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process[J]. Nature PublishingGroup, 2003, 2(8): 528-531.
[64] KAUSHIK S, MANIKANDAN S, HANS R. Energy and exergy analysis of an annular thermoelectric heat pump[J]. Journal of Electronic Materials, 2016, 45(7): 3400-3409.
[65] LANDECKER K. Improvement of the performance of Peltier junctions for thermoelectric cooling [J]. Journal of Physics C: Solid State Physics,1970, 3:2146.
[66] BADILLO C A, OLIVARES M A, RUIZ P E. Performance of segmented thermoelectric cooler micro-elements with different geometric shapes and temperature-dependent properties[J]. Entropy, 2018, 20(2):118.1-118.17.
[67] VANEY J B, YAMINI S A, TAKAKI H, et al. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite[J]. Materials Today Physics, 2019, 9:100090.1-100090.10.
[68] MUZAFFAR M U, ZHU B, YANG Q, et al. Suppressing bipolar effect to broadening the optimum range of thermoelectric performance for p-type bismuth telluride–based alloys via calcium doping[J]. Materials Today Physics, 2019, 9: 100130.1-100130.10.
[69] HICKS L D, DRESSELHAUS M S. Effect of fquantum-well structures on the thermoelectric figure of merit[J].Physical Review B, 1993, 47(19):12727-12731.
[70] OUYANG L, GUO L, CAI W, et al. Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(29):11280-11285.
[71] CHEN Z, PEI W, ZHANG S, et al. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing[J]. Materials Science and Engineering A, 2019, 769:138484.1-138484.10.
[72] WANG W, LU Z, ZENG M, et al. Achieving high transverse rupture strength of WC-8Co hardmetals through forming plate-like WC grains by plasma assisted milling[J]. Materials Chemistry and Physics, 2017, 190:128-135.
[73] PAN Y, QIU Y, WITTING I, et al. Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance[J]. Energy & Environmental Science, 2019, 12(2):624-630.
[74] 张骐昊.方钴矿基热电发电器件的优化设计与性能研究[D].上海:中国科学院上海 硅酸盐研究所,2017.
[75] ANTONOVA E E, LOOMAN D C. Finite elements for thermoelectric device analysis in ANSYS [C]//proceedings of the ICT 2005 24th International Conference on Thermoelectrics. Clemson:IEEE, 2005:200-203.
[76] DINCA M P, GHEORGHE M, GALVIN P. Design of a PID controller for a PCR micro reactor[J]. IEEE Transactions on Education, 2009, 52(1):116-125.
[77] DEBNATH M K. Automatic Generation Control Including Solar Thermal Power Generation with Fuzzy-PID Controller with Derivative Filter[J]. International Journal of Renewable Energy Research, 2018, 8(1):26-35.
修改评论