[1] DORSEY E R, ELBAZ A, NICHOLS E, et al. Global, regional, and national burden of Parkinson’sdisease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. The Lancet Neurology, 2018, 17(11): 939953.
[2] PEREZLLORETS, NEGREPAGESL, DAMIER P, et al. Prevalence, determinants, and effecton quality of life of freezing of gait in Parkinson disease[J]. JAMA neurology, 2014, 71(7):884890.
[3] HOEHN M M, YAHR M D. Parkinsonism: onset, progression and mortality.[J]. Neurology,2001.
[4] GOETZ C G, TILLEY B C, SHAFTMAN S R, et al. Movement Disorder Societysponsoredrevision of the Unified Parkinson’s Disease Rating Scale (MDSUPDRS):scale presentation andclinimetric testing results[J]. Movement disorders: official journal of the Movement DisorderSociety, 2008, 23(15): 21292170.
[5] MIRELMAN A, BONATO P, CAMICIOLI R, et al. Gait impairments in Parkinson’s disease[J]. The Lancet Neurology, 2019, 18(7): 697708.
[6] LORD S, GALNA B, ROCHESTER L. Moving forward on gait measurement: toward a morerefined approach[J]. Movement Disorders, 2013, 28(11): 15341543.
[7] CHRISTOPHER BUCKLEY L A. The Role of Movement Analysis in Diagnosing and MonitoringNeurodegenerative Conditions: Insights from Gait and Postural Control[J]. Brain Sciences,2019, 9(2).
[8] CREVECOEUR F, BOLLENS B, DETREMBLEUR C, et al. Towards a “goldstandard”approachto address the presence of longrangeautocorrelationin physiological time series[J].Journal of Neuroscience Methods, 2010, 192(1): 163172.
[9] HAUSDORFF J M. Gait dynamics in Parkinsondisease: Common and distinct behavior amongstride length, gait variability, and fractallikescaling[J]. Chaos: An Interdisciplinary Journal ofNonlinear Science, 2009, 19(2): 026113.
[10] DEL DIN S, HICKEY A, LADHA C, et al. Instrumented gait assessment with a single wearable:an introductory tutorial[J]. F1000Research, 2016, 5(2323): 2323.
[11] ZIJLSTRA W, HOF A L. Assessment of spatiotemporalgait parameters from trunk accelerationsduring human walking[J]. Gait & posture, 2003, 18(2): 110.
[12] TROJANIELLO D, CEREATTI A, DELLA CROCE U. Accuracy, sensitivity and robustnessof five different methods for the estimation of gait temporal parameters using a single inertialsensor mounted on the lower trunk[J]. Gait & posture, 2014, 40(4): 487492.
[13] GAGE J R. An overview of normal walking[J]. Instructional Course Lectures, 1990, 39: 291303.
[14] PhysioSunit[EB/OL]. https://physiosunit.com/gaitdefinitionphasesofcycleexplained/.
[15] REHMAN R Z U, DEL DIN S, GUAN Y, et al. Selecting clinically relevant gait characteristicsfor classification of early parkinson’s disease: A comprehensive machine learning approach[J].Scientific reports, 2019, 9(1): 112.
[16] LORD S, GALNA B, VERGHESE J, et al. Independent domains of gait in older adults andassociated motor and nonmotor attributes: validation of a factor analysis approach[J]. Journalsof Gerontology Series A: Biomedical Sciences and Medical Sciences, 2013, 68(7): 820827.
[17] DEL DIN S, HICKEY A, HURWITZ N, et al. Measuring gait with an accelerometerbasedwearable: influence of device location, testing protocol and age[J]. Physiological Measurement,2016, 37(10): 1785.
[18] DEL DIN S, ELSHEHABI M, GALNA B, et al. Gait analysis with wearables predicts conversionto parkinson disease[J]. Annals of Neurology, 2019, 86(3): 357367.
[19] GHORAANI B, BOETTCHER L N, HSSAYENI M D, et al. Detection of mild cognitive impairmentand Alzheimer’s disease using dualtaskgait assessments and machine learning[J].Biomedical Signal Processing and Control, 2021, 64: 102249.
[20] WAHID F, BEGG R K, HASS C J, et al. Classification of Parkinson’s disease gait using spatialtemporalgait features[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(6):17941802.
[21] TAHIR N M, MANAP H H. Parkinson disease gait classification based on machine learningapproach[J]. Journal of Applied Sciences(Faisalabad), 2012, 12(2): 180185.
[22] PRADHAN C, WUEHR M, AKRAMI F, et al. Automated classification of neurological disordersof gait using spatiotemporalgait parameters[J]. Journal of Electromyography and Kinesiology,2015, 25(2): 413422.
[23] REHMAN R Z U, KLOCKE P, HRYNIV S, et al. Turning detection during gait: Algorithmvalidation and influence of sensor location and turning characteristics in the classification ofparkinson’s disease[J]. Sensors, 2020, 20(18): 5377.
[24] OEDA T, UMEMURA A, TOMITA S, et al. Clinical s associated with abnormal postures inParkinson’s disease[J]. PLoS One, 2013, 8(9): e73547.
[25] ZANARDI A P J, DA SILVA E S, COSTA R R, et al. Gait parameters of Parkinson’s diseasecompared with healthy controls: a systematic review and metaanalysis[J]. Scientific reports,2021, 11(1): 113.
[26] DRANCA L, DE MENDAROZKETA L D A R, GOÑI A, et al. Using Kinect to classify Parkinson’sdisease stages related to severity of gait impairment[J]. BMC bioinformatics, 2018, 19(1): 115.
[27] PHAM M H, ELSHEHABI M, HAERTNER L, et al. Algorithm for turning detection andanalysis validated under homelikeconditions in patients with Parkinson’s disease and olderadults using a 6 degreeoffreedominertial measurement unit at the lower back[J]. Frontiers inNeurology, 2017: 135.
[28] KARLSSON M K, MAGNUSSON H, VON SCHEWELOV T, et al. Prevention of falls in theelderly—a review[J]. Osteoporosis international, 2013, 24(3): 747762.
[29] CHEN J, KWONG K, CHANG D, et al. Wearable sensors for reliable fall detection[C]//2005IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2006: 35513554.
[30] BOURKE A K, LYONS G M. A thresholdbasedfalldetectionalgorithm using a biaxialgyroscopesensor[J]. Medical engineering & physics, 2008, 30(1): 8490.
[31] WU F, ZHAO H, ZHAO Y, et al. Development of a wearablesensorbasedfall detection system[J]. International Journal of Telemedicine and Applications, 2015, 2015: 576364.
[32] ABBATE S, AVVENUTI M, COLA G, et al. Recognition of false alarms in fall detection systems[C]//2011 IEEE Consumer Communications and Networking Conference (CCNC). IEEE,2011: 2328.
[33] ÖZDEMIR A T, BARSHAN B. Detecting falls with wearable sensors using machine learningtechniques[J]. Sensors, 2014, 14(6): 1069110708.
[34] BECKER C, SCHWICKERT L, MELLONE S, et al. Proposal for a multiphase fall modelbased on realworldfall recordings with bodyfixedsensors[J]. Zeitschrift für Gerontologieund Geriatrie, 2012, 45(8): 707715.
[35] HSIEH C Y, LIU K C, HUANG C N, et al. Novel hierarchical fall detection algorithm using amultiphase fall model[J]. Sensors, 2017, 17(2): 307.
[36] Axivity[EB/OL]. https://axivity.com/product/ax6.
[37] MILLECAMPS A, LOWRY K A, BRACH J S, et al. Understanding the effects of preprocessingon extracted signal features from gait accelerometry signals[J]. Computers in Biologyand Medicine, 2015, 62: 164174.
[38] Bout indentification[EB/OL]. https://matt002.github.io/GaitPy/html/gaitpy_functions.html.
[39] WACHOWIAK M P, RASH G S, QUESADA P M, et al. Waveletbasednoise removal forbiomechanical signals: A comparative study[J]. IEEE Transactions on Biomedical Engineering,2000, 47(3): 360368.
[40] MCCAMLEY J, DONATI M, GRIMPAMPI E, et al. An enhanced estimate of initial contactand final contact instants of time using lower trunk inertial sensor data[J]. Gait & posture, 2012,36(2): 316318.
[41] HSIAO E T, ROBINOVITCH S N. Common protective movements govern unexpected fallsfrom standing height[J]. Journal of Biomechanics, 1997, 31(1): 19.
[42] BIDARGADDI N, KLINGBEIL L, SARELA A, et al. Wavelet based approach for posture transitionestimation using a waist worn accelerometer[C]//2007 29th Annual International Conferenceof the IEEE Engineering in Medicine and Biology Society. IEEE, 2007: 18841887.
修改评论