中文版 | English
题名

基于多元聚合物太阳能电池的效率优化研究

其他题名
ENHANCING THE EFFICIENCY OF MULTI-COMPONENT POLYMER SOLAR CELLS
姓名
姓名拼音
LIU Longzhu
学号
11749270
学位类型
博士
学位专业
0817 化学工程与技术
学科门类/专业学位类别
08 工学
导师
何凤
导师单位
化学系
论文答辩日期
2022-05-16
论文提交日期
2022-06-30
学位授予单位
哈尔滨工业大学
学位授予地点
深圳
摘要

充分利用太阳能这类绿色能源是解决能源危机的一种有效途径。与传统的无机太阳能电池相比,聚合物太阳能电池(PSCs)因其轻质、柔性、易于溶液加工等优点,受到国内外研究人员的广泛关注。目前,通过改进分子结构、器件结构和器件制备工艺,聚合物太阳能电池的发展已经取得了巨大的进步。但是,如何有效提高聚合物太阳能电池的能量转换效率(PCE)和稳定性仍然是该研究领域面临的最大挑战。为了实现高效的聚合物太阳能电池,研究人员已经合成了大量的给受体分子。而相比之下,有关器件工程及其工作机理的研究却明显落后。因此,本论文致力于解决器件工程中优化调控聚合物太阳能电池活性层组分的问题,构建出了一系列的高效多元体系,进一步改善了聚合物太阳能电池光电性能,同时对各多元体系的工作机理进行了探讨。以改善本体异质结结构聚合物太阳能电池的重要性能参数(开路电压Voc、短路电流密度Jsc、填充因子FF和PCE)为出发点,本论文通过优化调控多组分活性层,调节聚合物太阳能电池的能级排布、光谱响应和分子聚集形貌,从而达到提高聚合物太阳能电池光电转换效率的目的。具体的主要研究内容及成果如下:

首先,利用两个不同的取代基,羟基(-OH)和乙酰氧基(-OCOMe),对BTIC核的末端β位点进行端基取代,合成了两种新型非富勒烯受体分子BTIC-OH-β和BTIC-OCOMe-β,从而获得具有更优分子聚集形貌的二元聚合物太阳能电池,将其作为下一步三元策略研究的主体。以改善聚合物太阳能电池性能参数中的Voc为出发点,引入PBDB-TF给体作为第三组分,实现了三元体系间级联结构的能级排布,从而将基于二元主体器件的Voc从0.84 V有效提高至0.89 V。结合稳态荧光光谱(PL),结果表明,三元聚合物太阳能电池的工作模型应为电荷转移。基于电荷转移模型,Voc和Jsc在最佳比例下达到平衡,PBDB-T:BTIC-OCOMe-β二元器件的PCE从10.80%有效提高至三元(PBDB-T:PBDB-TF:BTIC-OCOMe-β)器件的12.45%。另外,通过电致发光外量子效率(EQEEL)和瞬态光电技术,进一步研究了Voc提升的来源以及Jsc提升的原因,从而对多给体三元策略提升聚合物太阳能电池性能的作用机制有了更深入的理解。

其次,以改善聚合物太阳能电池性能参数中的Jsc为出发点,选用本课题组开发的氯代聚合物太阳能电池作为本身具有高Voc的二元主体。通过实现活性层组分间的吸收互补,尽可能多地覆盖太阳光谱。本论文基于相同的二元主体,分别衍生出两个三元体系(富勒烯三元体系和非富勒烯三元体系)。具体的,分别将富勒烯受体PC71BM和非富勒烯受体BT6IC-BO-4Cl引入PBT4Cl-Bz:IT-4F中作为第三组分,将器件PCE从9%左右有效提高至约11.30%。两个体系的光学性质、光谱响应和载流子传输性能的结果表明,基于合金结构的工作模型,PC71BM的各向同性载流子传输特性更有利于提升三元器件性能参数中的FF;而基于平行结构工作模型,BT6IC-BO-4Cl的近红外强吸收则更有利于促进了Jsc的提高。并且,基于PBT4Cl-Bz:IT-4F:PC71BM:BT6IC-BO-4Cl的四元器件进一步将Jsc从16.44 mA cm-2提升到更高水平(19.66 mA cm-2),使得优化后的器件最佳效率达到11.69%。

最后,以构建高效的四元体系,改善性能参数中的FF为出发点,本论文选用了本身具有高Jsc的PTB7-Th:IEICO-4F作为二元主体。引入与PTB7-Th混溶性良好的富勒烯衍生物受体作为第三和第四组分,构建了PTB7-Th:IEICO-4F:PC71BM:PC61BM四元体系。掠入射广角X射线散射(GIWAXS)结果表明,富勒烯PC71BM和PC61BM共受体有效调节了四元共混膜的分子堆积取向,增加了共混膜的结晶性;瞬态光电技术表征则进一步表明,四元器件的载流子传输能力也同时增强。因此,四元策略不仅促进了FF从58.24%上涨到69.30%,还将Jsc从22.07 mA cm-2提高至24.37 mA cm-2,使得太阳能电池器件获得了12.52%的最高转换效率(远高于二元器件9.67%的最佳效率)。另外,该四元体系对多组分调节比例还具有高耐受性。同时,该四元策略在其它与IEICO-4F相似的非富勒烯体系中也发挥了优化聚合物太阳能电池效率的作用,验证了其通用性。总而言之,本研究将为多元策略的实现提供更多的可能性,同时为改善聚合物太阳能电池性能提供一条简单高效的路径。

其他摘要

Fully exploiting the environmental-friendly solar energy is one of the promising ways to counter the energy crisis. In contrast to inorganic photovoltaics, polymer solar cells (PSCs) have attracted attention from academia at home and abroad due to its light-weight, flexible and solution-processing features. Till now, PSCs have gained great progress by modifying the molecular structures, devices structures and devices fabrications. But how to improve the power conversion efficiency (PCE) and stability of PSCs is still the hugest challenge for this field. To achieve high-efficiency PSCs, there existed lots of research on molecular synthesis, while the research on devices engineering and its mechanism obviously lagged. Therefore, this work mainly researched on how to optimize and control the multi components of active layer, constructing efficient multi-component system for further enhancing the quality of PSCs. Meanwhile, the mechanism of the multi-component strategy was deeply investigated as well. Taking the key performances which include open circuit (Voc), short-circuit current density (Jsc), fill factor (FF) and PCE of Bulk Heterojunctions (BHJ) as the starting point, this work enhanced the PCE of PSCs by optimizing multi-components of active layer, efficiently modulating the energy levels alignment, spectrum response, and blend morphology. Detailed main research contents and results are as follow:

Firstly, two new non-fullerene acceptors, BTIC-OH-β and BTIC-OCOMe-β, were synthesized by substituting hydroxyl (-OH) and acetoxy (-OCOMe) group at the terminal β-position of the BTIC core, and then between them, the binary system which posessed the better film morphology was selected as the host for the tenary research. To improve Voc, an analogue donor, PBDB-TF, was introduced as the third component, making the cascade energy level alignment among the ternary system, improving the Voc from 0.84 V to 0.89 V. The charge transfer mechanism was deduced by steady-state photoluminescence (PL). Based on charge transfer, the Jsc and Voc of ternary devices was banlanced so that the efficiency of devices based on PBDB-T:BTIC-OCOMe-β was pumped from 10.80% to a champion PCE of 12.45% based on the PBDB-T:PBDB- TF:BTIC-OCOMe-β devices. Moreover, external quantum efficiency for electroluminescence (EQEEL) and transient photovoltaic techniques were utilized to further study the origin of Voc and Jsc promotion, thus the better understandings on how bi-donor ternary strategy worked were obtained.

Secondly, before improving the Jsc, the chlorinated polymer solar cells published by our group were selected as the binary host to because of its high Voc. Through realizing the complementary absorption among the active layer components, leading to the fully overlap of the solar spectrum, this work derivated two ternary systems (one was fullerene ternary system and another is non-fullerene ternary system) based on the same binary sytem. Detailedly, the fullerene acceptor PC71BM and non-fullerene acceptor BT6IC-BO-4Cl were added as the third component, respectively. As a result, the efficiency of binary devices was elevated from about 9% to approximately 11.30% of ternary devices. With the estimation of absorption property, photovoltaic response and carrier transport, it was suggested that the both ternary systems worked as different mechanism, so PC71BM with isotropic electron-transporting property facilitated largely to the FF, while the BT6IC-BO-4Cl with strong infrared absorption mostly benefited to the Jsc. Moreover, the PBT4Cl-Bz:IT-4F:PC71BM:BT6IC-BO-4Cl quaternary devices further promoted the Jsc from 16.44 mA cm-2 to 19.66 mA cm-2 which was the champion amongst these systems. As a result, the best efficiency of quaternary devices achieved 11.69%.

Lastly, to construct efficient quaternary system and before improving the FF, this work chose the PTB7-Th:IEICO-4F as the binary host due to its high Jsc. Introducing two fullerene derivations as the additives, the quaternary system based on PTB7-Th:IEICO-4F:PC71BM:PC61BM was built up. Confirmed by the grazing incidence wide-angle X-ray scattering (GIWAXS), it can be seen that the PC71BM:PC61BM co-acceptor efficiently tuned molecular stacking and crystalline of quaternary blend. With the transient techniques, it was demonstrated that the carrier transport quality was also strengthened. Therefore, the quaternary strategy not only increased the FF from 58.24% to 69.30%, but also raised the Jsc from 22.07 mA cm-2 to 24.37 mA cm-2. As a result, the quatenary devices obtained an optimal efficiency of 12.52% which was much higher than the binary devices with a best PCE of 9.67%. In addition, the quaternary system also showed a high-tolerance to the ratio of additives.At the same time, the quaternary strategy gained wide gernality in other classic non-fullerene systems resembling IEICO-4F-based sytem. In summary, this research may provide more possibilities for multi-component realization and may provide another simple and efficient way to enhance the performances of PSCs.

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-07
参考文献列表

[1] 王伟兴, 康庆华, 董帆, et al. 国内外能源利用现状分析[J]. 云南化工, 2019, 46(06): 48-49.
[2] Williams R. Becquerel. Photovoltaic Effect in Binary Compounds[J]. The Journal of Chemical Physics, 1960, 32(5): 1505-1514.
[3] 梁启超, 乔芬, 杨健, et al. 太阳能电池的研究现状与进展[J]. 中国材料进展,2019, 38(05): 505-511.
[4] 李忠贤.太阳能电池研究现状[J]. 信息记录材料, 14(3): 58-61.
[5] Tang C W. Two-Layer Organic Photovoltaic Cell.[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[6] Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
[7] Stalmach U, de Boer B, Videlot C, et al. Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques[J]. Journal of the American Chemical Society, 2000, 122(23): 5464-5472.
[8] Padinger F, Rittberger R S, Sariciftci N S. Effects of Postproduction Treatment on Plastic Solar Cells[J]. Advanced Functional Materials, 2003, 13(1): 85-88.
[9] Li G, Shrotriya V, Huang J, et al. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends[J]. Nature Materials, 2005, 4(11): 864-868.
[10] Chen H-Y, Hou J, Zhang S, et al. Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency[J]. Nature Photonics, 2009, 3(11): 649-653.
[11] Liang Y, Xu Z, Xia J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20): E135-E138.
[12] He Z, Zhong C, Su S, et al. Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure[J]. Nature Photonics, 2012, 6(9): 591-595.
[13] Lin Y, Wang J, Zhang Z G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[14] Liao S H, Hou J, Cheng Y S, et al. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance[J]. Advanced materials, 2013, 25(34): 4766-4771.
[15] Zhao W, Qian D, Zhang S, et al. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability[J]. Advanced materials, 2016, 28(23): 4734-4739.
[16] Zhao W, Li S, Yao H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.
[17] Li W, Ye L, Li S, et al. A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor[J]. Advanced Materials, 2018, 30(16): 1707170.
[18] Meng L, Zhang Y, Wan X, et al. Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency[J]. Science, 2018, 361(6407): 1094-1098.
[19] Yuan J, Zhang Y, Zhou L, et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core[J]. Joule, 2019, 3(4): 1140-1151.
[20] Fan Q, Su W, Wang Y, et al. Synergistic Effect of Fluorination on Both Donor and Acceptor Materials for High Performance Non-Fullerene Polymer Solar Cells with 13.5% Efficiency[J]. Science China Chemistry, 2018, 61(5): 531-537.
[21] Cui Y, Yao H, Zhang J, et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency[J]. Advanced Materials, 2020, 32(19): 1908205.
[22] Wang J, Zheng Z, Zu Y, et al. A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control[J]. Advanced Materials, 2021, 33(39): 2102787.
[23] Cui Y, Xu Y, Yao H, et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency [J]. Advanced Materials, 2021, 33(41): e2102420.
[24] Wang G, Adil M A, Zhang J, et al. Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods [J]. Advanced Materials, 2019, 31(45): 1805089.
[25] Dong S, Jia T, Zhang K, et al. Single-Component Non-Halogen Solvent-Processed High-Performance Organic Solar Cell Module with Efficiency over 14%[J]. Joule, 2020, 4(9): 2004-2016.
[26] Corzo D, Almasabi K, Bihar E, et al. Digital Inkjet Printing of High‐Efficiency Large‐Area Nonfullerene Organic Solar Cells[J]. Advanced Materials Technologies, 2019, 4(7): 1900040.
[27] Søndergaard R, Hösel M, Angmo D, et al. Roll-to-Roll Fabrication of Polymer Solar Cells [J]. Materials Today,2012, 15(1-2): 36-49.
[28] Sun Y, Chang M, Meng L, et al. Flexible Organic Photovoltaics Based on Water-Processed Silver Nanowire Electrodes [J]. Nature Electronics, 2019, 2(11): 513-520.
[29] Qin F, Sun L, Chen H, et al. 54 cm2 Large-Area Flexible Organic Solar Modules with Efficiency above 13%[J]. Advanced Materials, 2021, 33(39): 2103017.
[30] Zheng W, Luo X, Zhang Y, et al. Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23190-23198.
[31] Jiang T, Zhang G, Xia R, et al. Semitransparent Organic Solar Cells Based on All-Low-Bandgap Donor and Acceptor Materials and Their Performance Potential[J]. Materials Today Energy, 2021, 21: 100807.
[32] Cui Y, Wang Y, Bergqvist J, et al. Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications[J]. Nature Energy,2019, 4(9): 768-775.
[33] Xia R, Brabec C J, Yip H L, et al. High-Throughput Optical Screening for Efficient Semitransparent Organic Solar Cells[J]. Joule, 2019, 3(9): 2241-2254.
[34] Kearns D, Calvin M. Photovoltaic Effect and Photoconductivity in Laminated Organic Systems[J]. The Journal of Chemical Physics, 1958, 29(4): 950-951.
[35] Chen P, Nakano K, Suzuki K, et al. Organic Solar Cells with Controlled Nanostructures Based on Microphase Separation of Fullerene-Attached Thiophene-Selenophene Heteroblock Copolymers[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4758-4768.
[36] Zhang F, Svensson M, Andersson M R, et al. Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes[J]. Advanced Materials, 2001, 13(24): 1871-1874.
[37] Ramos A M, Rispens M T, van Duren J K J, et al. Photoinduced Electron Transfer and Photovoltaic Devices of A Conjugated Polymer with Pendant Fullerenes[J]. Journal of the American Chemical Society, 2001, 123(27): 6714-6715.
[38] Feng G, Li J, He Y, et al. Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells[J]. Joule, 2019, 3(7): 1765-1781.
[39] Mitchell V D, Jones D J. Advances toward the Effective Use of Block Copolymers as Organic Photovoltaic Active Layers[J]. Polymer Chemistry, 2018, 9(7): 795-814.
[40] Guo C, Lin Y H, Witman M D, et al. Conjugated Block Copolymer Photovoltaics with near 3% Efficiency through Microphase Separation [J]. Nano Letters, 2013, 13(6): 2957-2963.
[41] Li S, Yuan X, Zhang Q, et al. Narrow-Bandgap Single-Component Polymer Solar Cells with Approaching 9% Efficiency[J]. Advanced Materials, 2021, 33(32): 2101295.
[42] Aubele A, He Y, Kraus T, et al. Molecular Oligothiophene-Fullerene Dyad Reaching over 5% Efficiency in Single-Material Organic Solar Cells [J]. Advanced Materials, 2021: 2103573.
[43] Wang W, Sun R, Guo J, et al. An Oligothiophene-Fullerene Molecule with a Balanced Donor-Acceptor Backbone for High-Performance Single-Component Organic Solar Cells[J]. Angewandte Chemie International Edition, 2019, 58(41): 14556-14561.
[44] Nguyen T L, Lee T H, Gautam B, et al. Single Component Organic Solar Cells Based on Oligothiophene‐Fullerene Conjugate[J]. Advanced Functional Materials, 2017, 27(39): 1702474.
[45] Segura J L, Martín N, Guldi D M. Materials for Organic Solar Cells: The C60/Pi-Conjugated Oligomer Approach[J]. Chemical Society Reviews, 2005, 34(1): 31-47.
[46] Roncali J. Single Material Solar Cells: The Next Frontier for Organic Photovoltaics?[J]. Advanced Energy Materials, 2011, 1(2): 147-160.
[47] Roncali J, Grosu I. The Dawn of Single Material Organic Solar Cells[J]. Advanced Science, 2019, 6(1): 1801026.
[48] 李韦伟. 给体/受体双缆型共轭聚合物材料及其单组分有机太阳能电池器件[J]. 高分子学报, 2019, 50(03): 209-218.
[49] Jiang X, Yang J, Karuthedath S, et al. Miscibility-Controlled Phase Separation in Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiencies over 8%[J]. Angewandte Chemie International Edition, 2020, 132(48): 21867-21876.
[50] Wu Y, Guo J, Wang W, et al. A Conjugated Donor-Acceptor Block Copolymer Enables over 11% Efficiency for Single-Component Polymer Solar Cells[J]. Joule, 2021, 5(7): 1800-1815.
[51] Wang Y, Zhan X. Layer-by-Layer Processed Organic Solar Cells[J]. Advanced Energy Materials, 2016, 6(17): 1600414.
[52] Zimmerman J D, Song B, Griffith O, et al. Exciton-Blocking Phosphonic Acid-Treated Anode Buffer Layers for Organic Photovoltaics[J]. Applied Physics Letters, 2013, 103(24): 243905.
[53] Rand B P, Li J, Xue J, et al. Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(Acetylacetonato)Ruthenium(III) Exciton-Blocking Layers[J]. Advanced Materials, 2005, 17(22): 2714-2718.
[54] Peumans P, Forrest S R. Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells[J]. Applied Physics Letters, 2001, 79(1): 126-128.
[55] Ayzner A L, Tassone C J, Tolbert S H, et al. Reappraising the Need for Bulk Heterojunctions in Polymer−Fullerene Photovoltaics: the Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells[J]. The Journal of Physical Chemistry C, 2009, 113(46): 20050-20060.
[56] Liu Y, Liu F, Wang H W, et al. Sequential Deposition: Optimization of Solvent Swelling for High-Performance Polymer Solar Cells[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 653-661.
[57] Kim Y J, Park C E. Well Defined Double Layers Via Binary Solvent Mixtures for Highly Efficient Inverted All-Polymer Solar Cells[J]. Organic Electronics, 2018, 52: 301-308.
[58] Cheng P, Yan C, Wu Y, et al. Efficient and Stable Organic Solar Cells Via a Sequential Process[J]. Journal of Materials Chemistry C, 2016, 4(34): 8086-8093.
[59] Dong S, Zhang K, Xie B, et al. High-Performance Large-Area Organic Solar Cells Enabled by Sequential Bilayer Processing Via Nonhalogenated Solvents[J]. Advanced Energy Materials, 2019, 9(1): 1802832.
[60] Chen H, Zhao T, Li L, et al. 17.6%-Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3d Network Acceptor[J]. Advanced Materials, 2021, 33 (37): 2102778.
[61] Wang X, Zhang L, Hu L, et al. High‐Efficiency (16.93%) Pseudo‐Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy[J]. Advanced Functional Materials, 2021, 31(33): 2102291.
[62] Wan J, Zhang L, He Q, et al. High‐Performance Pseudoplanar Heterojunction Ternary Organic Solar Cells with Nonfullerene Alloyed Acceptor[J]. Advanced Functional Materials, 2020, 30(14): 1909760.
[63] Li Y, Lin Y. Planar Heterojunctions for Reduced Non-Radiative Open-Circuit Voltage Loss and Enhanced Stability of Organic Solar Cells[J]. Journal of Materials Chemistry C, 2021, 9(35): 11715-11721.
[64] Yu R, Wei X, Wu G, et al. Layer‐by‐Layered Organic Solar Cells: Morphology Optimizing Strategies and Processing Techniques[J]. Aggregate, 2021: e107.
[65] Fu H, Gao W, Li Y, et al. A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells[J]. Small Methods, 2020, 4(12): 2000687.
[66] Hong L, Yao H, Cui Y, et al. Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction[J]. Advanced Materials, 2021, 33(43): 2103091.
[67] Siegmund B, Sajjad M T, Widmer J, et al. Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells[J]. Advanced Materials, 2017, 29(12): 1604424.
[68] Kim S H, Saeed M A, Lee S Y, et al. Investigating the Indoor Performance of Planar Heterojunction Based Organic Photovoltaics[J]. IEEE Journal of Photovoltaics, 2021, 11(4): 997-1003.
[69] You J, Dou L, Hong Z, et al. Recent Trends in Polymer Tandem Solar Cells Research[J]. Progress in Polymer Science,2013, 38(12): 1909-1928.
[70] Hiramoto M, Suezaki M, Yokoyama M. Effect of Thin Gold Interstitial-Layer on the Photovoltaic Properties of Tandem Organic Solar Cell[J]. Chemistry Letters, 1990, 19(3): 327-330.
[71] Yakimov A, Forrest S R. High Photovoltage Multiple-Heterojunction Organic Solar Cells Incorporating Interfacial Metallic Nanoclusters[J]. Applied Physics Letters, 2002, 80(9): 1667-1669.
[72] Hadipour A, de Boer B, Wildeman J, et al. Solution-Processed Organic Tandem Solar Cells[J]. Advanced Functional Materials, 2006, 16(14): 1897-1903.
[73] Kim J Y, Lee K, Coates N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing[J]. Science, 2007, 317(5835): 222-225.
[74] Dou L, You J, Yang J, et al. Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer[J]. Nature Photonics, 2012, 6(3): 180-185.
[75] You J, Dou L, Yoshimura K, et al. [J]. Nature Communications, 2013, 4(1): 1446.
[76] Li M, Gao K, Wan X, et al. Solution-Processed Organic Tandem Solar Cells with Power Conversion Efficiencies >12%[J]. Nature Photonics, 2016, 11(2): 85-90.
[77] Zheng Z, Wang J, Bi P, et al. Tandem Organic Solar Cell with 20.2% Efficiency[J]. Joule, 2022, 6(1): 171-184.
[78] Lloyd M T, Mayer A C, Tayi A S, et al. Photovoltaic Cells from a Soluble Pentacene Derivative[J]. Organic Electronics, 2006, 7(5): 243-248.
[79] Sun X, Zhou Y, Wu W, et al. X-shaped Oligothiophenes as A New Class of Electron Donors for Bulk-heterojunction Solar Cells[J]. The Journal of Physical Chemistry B, 2006, 110(15): 7702-7707.
[80] Roncali J, Frere P, Blanchard P, et al. Molecular and Supramolecular Engineering of Π-Conjugated Systems for Photovoltaic Conversion[J]. Thin Solid Films, 2006, 511: 567-575.
[81] Walker B, Kim C, Nguyen T Q. Small Molecule Solution-Processed Bulk Heterojunction Solar Cells[J]. Chemistry of Materials, 2010, 23(3): 470-482.
[82] Walker B, Tamayo A B, Dang X D, et al. Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells[J]. Advanced Functional Materials, 2009, 19(19): 3063-3069.
[83] Sun Y, Welch G C, Leong W L, et al. Solution-Processed Small-Molecule Solar Cells with 6.7% Efficiency[J]. Nature Materials, 2011, 11(1): 44-48.
[84] Zhou J, Zuo Y, Wan X, et al. Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit[J]. Journal of the American Chemical Society, 2013, 135(23): 8484-8487.
[85] Kan B, Li M, Zhang Q, et al. A Series of Simple Oligomer-Like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency[J]. Journal of the American Chemical Society, 2015, 137(11): 3886-3893.
[86] Sun K, Xiao Z, Lu S, et al. A Molecular Nematic Liquid Crystalline Material for High-Performance Organic Photovoltaics[J]. Nature Communications, 2015, 6(1): 6013.
[87] Zhou Z, Xu S, Song J, et al. High-Efficiency Small-Molecule Ternary Solar Cells with a Hierarchical Morphology Enabled by Synergizing Fullerene and Non-Fullerene Acceptors[J]. Nature Energy, 2018, 3(11): 952-959.
[88] Zhou R, Jiang Z, Yang C, et al. All-Small-Molecule Organic Solar Cells with over 14% Efficiency by Optimizing Hierarchical Morphologies [J]. Nature Communications, 2019, 10(1): 5393.
[89] Chen H, Hu D, Yang Q, et al. All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor[J]. Joule, 2019, 3(12): 3034-3047.
[90] Yue Q, Wu H, Zhou Z, et al. 13.7% Efficiency Small-Molecule Solar Cells Enabled by a Combination of Material and Morphology Optimization[J]. Advanced Materials, 2019, 31(51): 1904283.
[91] Ge J, Xie L, Peng R, et al. 13.34 % Efficiency Non-Fullerene All-Small-Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors Via a Fluorination Strategy[J]. Angewandte Chemie International Edition, 2020, 59(7): 2808-2815.
[92] Sun R, Wu Y, Guo J, et al. High-Performance All-Small-Molecule Organic Solar Cells without Interlayers[J]. Energy & Environmental Science, 2021, 14 (5): 3174-3183.
[93] Zhang Z, Deng D, Li Y, et al. Polymerized Small‐Molecule Acceptor as an Interface Modulator to Increase the Performance of All‐Small‐Molecule Solar Cells[J]. Advanced Energy Materials, 2021: 2102394.
[94] Hu D, Yang Q, Zheng Y, et al. 15.3% Efficiency All-Small-Molecule Organic Solar Cells Achieved by A Locally Asymmetric F, Cl Disubstitution Strategy[J]. Advanced Science, 2021, 8(8): 2004262.
[95] Guo J, Qiu B, Yang D, et al. 15.71% Efficiency All‐Small‐Molecule Organic Solar Cells Based on Low‐Cost Synthesized Donor Molecules[J]. Advanced Functional Materials, 2021: 2110159.
[96] Qin J, Chen Z, Bi P, et al. 17% Efficiency All-Small-Molecule Organic Solar Cells Enabled by Nanoscale Phase Separation with a Hierarchical Branched Structure[J]. Energy & Environmental Science, 2021, 14(11): 5903-5910.
[97] 何畅, 侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[98] Xu Y, Yuan J, Zhou S, et al. Ambient Processable and Stable All-Polymer Organic Solar Cells[J]. Advanced Functional Materials, 2019, 29(8): 1806747.
[99] Yu G, Heeger A J. Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor/Acceptor Heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515.
[100] Zhan X, Tan Z, Domercq B, et al. A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells[J]. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
[101] Yan H, Chen Z, Zheng Y, et al. A High-Mobility Electron-Transporting Polymer for Printed Transistors[J]. Nature, 2009, 457(7230): 679-686.
[102] Moore J R, Albert‐Seifried S, Rao A, et al. Polymer Blend Solar Cells Based on a High-Mobility Naphthalenediimide-Based Polymer Acceptor: Device Physics, Photophysics and Morphology[J]. Advanced Energy Materials, 2011, 1(2): 230-240.
[103] Tang Y, McNeill C R. All-Polymer Solar Cells Utilizing Low Band Gap Polymers as Donor and Acceptor[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(6): 403-409.
[104] Li Z, Xu X, Zhang W, et al. High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing[J]. Journal of the American Chemical Society, 2016, 138(34): 10935-10944.
[105] Ji X, Xiao Z, Sun H, et al. Polymer Acceptors for All-Polymer Solar Cells[J]. Journal of Semiconductors, 2021, 42(8): 080202.
[106] Zhang Z G, Yang Y, Yao J, et al. Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507.
[107] Wang H, Chen H, Xie W, et al. Configurational Isomers Induced Significant Difference in All‐Polymer Solar Cells[J]. Advanced Functional Materials, 2021, 31 (26): 2100877.
[108] Liu T, Yang T, Ma R, et al. 16% Efficiency All-Polymer Organic Solar Cells Enabled by a Finely Tuned Morphology Via the Design of Ternary Blend[J]. Joule, 2021, 5(4): 914-930.
[109] Sun R, Wang W, Yu H, et al. Achieving over 17% Efficiency of Ternary All-Polymer Solar Cells with Two Well-Compatible Polymer Acceptors[J]. Joule, 2021, 5(6): 1548-1565.
[110] Wang G, Melkonyan F S, Facchetti A, et al. All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects[J]. Angewandte Chemie International Edition, 2019, 58(13): 4129-4142.
[111] Yang L, Yan L, You W. Organic Solar Cells Beyond One Pair of Donor-Acceptor: Ternary Blends and More [J]. The Journal of Physical Chemistry Letters, 2013, 4(11): 1802-1810.
[112] Kim H, Shin M, Kim Y. Distinct Annealing Temperature in Polymer: Fullerene: Polymer Ternary Blend Solar Cells[J]. The Journal of Physical Chemistry C, 2009, 113(4): 1620-1623.
[113] Lu L, Xu T, Chen W, et al. Ternary Blend Polymer Solar Cells with Enhanced Power Conversion Efficiency[J]. Nature Photonics, 2014, 8(9): 716-722.
[114] Hwang Y J, Li H, Courtright B A E, et al. Nonfullerene Polymer Solar Cells with 8.5% Efficiency Enabled by a New Highly Twisted Electron Acceptor Dimer[J]. Advanced Materials, 2016, 28(1): 124-131.
[115] Zhao W, Li S, Zhang S, et al. Ternary Polymer Solar Cells Based on Two Acceptors and One Donor for Achieving 12.2% Efficiency[J]. Advanced Materials, 2017, 29(2): 1604059.
[116] Xiao Z, Jia X, Ding L. Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency[J]. Science Bulletin, 2017, 62(23): 1562-1564.
[117] Wen Z C, Yin H, Hao X T. Recent Progress of Pm6:Y6-Based High Efficiency Organic Solar Cells[J]. Surfaces and Interfaces, 2021, 23: 100921.
[118] Donaghey J E, Armin A, Burn P L, et al. Dielectric Constant Enhancement of Non-Fullerene Acceptors via Side-Chain Modification[J]. Chemical Communications, 2015, 51(74): 14115-14118.
[119] Koster L J A, Shaheen S E, Hummelen J C. Pathways to a New Efficiency Regime for Organic Solar Cells[J]. Advanced Energy Materials, 2012, 2(10): 1246-1253.
[120] Knupfer M. Exciton Binding Energies in Organic Semiconductors[J]. Applied Physics A, 2003, 77(5): 623-626.
[121] Mikhnenko O V, Blom P W M, Nguyen T-Q. Exciton Diffusion in Organic Semiconductors[J]. Energy & Environmental Science, 2015, 8(7): 1867-1888.
[122] Sajjad M T, Ruseckas A, Samuel I D W. Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics[J]. Matter, 2020, 3(2): 341-354.
[123] Tamai Y, Fan Y, Kim V O, et al. Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells[J]. ACS nano, 2017, 11(12): 12473-12481.
[124] Gélinas S, Rao A, Kumar A, et al. Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes[J]. Science, 2014, 343(6170): 512-516.
[125] Koppe M, Egelhaaf H J, Dennler G, et al. Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells[J]. Advanced Functional Materials, 2010, 20(2): 338-346.
[126] Liu S, You P, Li J, et al. Enhanced Efficiency of Polymer Solar Cells by Adding a High-Mobility Conjugated Polymer[J]. Energy & Environmental Science, 2015, 8(5): 1463-1470.
[127] Li D, Zhu L, Liu X, et al. Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells over 17% Efficiency[J]. Advanced Materials, 2020, 32(34): 2002344.
[128] Min J, Ameri T, Gresser R, et al. Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-Bodipy Dyes as near-Ir Sensitizers for Ternary Solar Cells[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5609-5616.
[129] Nian L, Gao K, Liu F, et al. 11% Efficient Ternary Organic Solar Cells with High Composition Tolerance via Integrated Near-IR Sensitization and Interface Engineering[J]. Advanced Materials, 2016, 28(37): 8184-8190.
[130] Ma R, Liu T, Luo Z, et al. Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells[J]. ACS Energy Letters, 2020, 5(8): 2711-2720.
[131] An Q, Zhang F, Zhang J, et al. Enhanced Performance of Polymer Solar Cells through Sensitization by A Narrow Band Gap Polymer[J]. Solar Energy Materials and Solar Cells, 2013, 118: 30-35.
[132] Yang L, Zhou H, Price S C, et al. Parallel-Like Bulk Heterojunction Polymer Solar Cells[J]. Journal of the American Chemical Society, 2012, 134(12): 5432-5435.
[133] Xu X, Deng M, Lee Y W, et al. Realizing High-Efficiency Multiple Blend Polymer Solar Cells Via a Unique Parallel-Series Working Mechanism[J]. Journal of Materials Chemistry A, 2019, 7(43): 24937-24946.
[134] Zhang W, Huang J, Xu J, et al. Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells Via Parallel‐Like Ternary and Quaternary Strategies[J]. Advanced Energy Materials, 2020, 10(32): 2001436.
[135] Khlyabich P P, Burkhart B, Thompson B C. Efficient Ternary Blend Bulk Heterojunction Solar Cells with Tunable Open-Circuit Voltage[J]. Journal of the American Chemical Society, 2011, 133(37): 14534-14537.
[136] Street R A, Davies D, Khlyabich P P, et al. Origin of the Tunable Open-Circuit Voltage in Ternary Blend Bulk Heterojunction Organic Solar Cells[J]. Journal of the American Chemical Society, 2013, 135(3): 986-989.
[137] Zhang J, Zhang Y, Fang J, et al. Conjugated Polymer-Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(25): 8176-8183.
[138] An Q, Wang J, Ma X, et al. Two Compatible Polymer Donors Contribute Synergistically for Ternary Organic Solar Cells with 17.53% Efficiency[J]. Energy & Environmental Science, 2020, 13(12): 5039-5047.
[139] Bi P, Zhang S, Chen Z, et al. Reduced Non-Radiative Charge Recombination Enables Organic Photovoltaic Cell Approaching 19% Efficiency[J]. Joule, 2021, 5(9): 2408-2419.
[140] Zuo L, Jo S B, Li Y, et al. Dilution Effect for Highly Efficient Multiple-Component Organic Solar Cells[J]. Nature Nanotechnology, 2022, 17: 53-60.
[141] Arunagiri L, Peng Z, Zou X, et al. Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells[J]. Joule, 2020, 4(8): 1790-1805.
[142] Li X, Zhou L, Lu X, et al. Hydrogen Bond Induced High-Performance Quaternary Organic Solar Cells with Efficiency up to 17.48% and Superior Thermal Stability[J]. Materials Chemistry Frontiers, 2021, 5(10): 3850-3858.
[143] Zhang M, Zhu L, Zhou G, et al. Single-Layered Organic Photovoltaics with Double Cascading Charge Transport Pathways: 18% Efficiencies[J]. Nature Communications, 2021, 12(1): 309.
[144] Scharber M C, Mühlbacher D, Koppe M, et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency[J]. Advanced Materials, 2006, 18(6): 789-794.
[145] Rivnay J, Mannsfeld S C B, Miller C E, et al. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale[J]. Chemical reviews, 2012, 112(10): 5488-5519.
[146] Jiang Z. A Matlab Toolbox for Grazing-Incidence X-Ray Scattering Data Visualization and Reduction, and Indexing of Buried Three-Dimensional Periodic Nanostructured Films [J]. Journal of Applied Crystallography, 2015, 48(3): 917-926.
[147] Xiao Y, Lu X. Morphology of Organic Photovoltaic Non-Fullerene Acceptors Investigated by Grazing Incidence X-Ray Scattering Techniques[J]. Materials Today Nano, 2019, 5: 100030.
[148] Meskers S C J, van Hal P A, Spiering A J H, et al. Time-Resolved Infrared-Absorption Study of Photoinduced Charge Transfer in A Polythiophene-Methanofullerene Composite Film[J]. Physical Review B, 2000, 61(15): 9917.
[149] Schilinsky P, Waldauf C, Brabec C J. Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors[J]. Applied Physics Letters, 2002, 81(20): 3885-3887.
[150] Koster L J A, Mihailetchi V D, Xie H, et al. Origin of the Light Intensity Dependence of the Short-Circuit Current of Polymer/Fullerene Solar Cells[J]. Applied Physics Letters, 2005, 87(20): 203502.
[151] Koster L J A, Smits E C P, Mihailetchi V D, et al. Device Model for the Operation of Polymer/Fullerene Bulk Heterojunction Solar Cells[J]. Physical Review B, 2005, 72(8): 085205.
[152] Schilinsky P, Waldauf C, Hauch J, et al. Simulation of Light Intensity Dependent Current Characteristics of Polymer Solar Cells[J]. Journal of Applied Physics, 2004, 95(5): 2816-2819.
[153] Koster L J A, Mihailetchi V D, Ramaker R, et al. Light Intensity Dependence of Open-Circuit Voltage of Polymer:Fullerene Solar Cells[J]. Applied physics letters, 2005, 86(12): 123509.
[154] Street R A. Localized State Distribution and Its Effect on Recombination in Organic Solar Cells[J]. Physical Review B, 2011, 84(7): 075208.
[155] Maurano A, Shuttle C G, Hamilton R, et al. T Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5947-5957.
[156] Palomares E, Montcada N F, Méndez M, et al. Photovoltage/photocurrent Transient Techniques[M]. Characterization Techniques for Perovskite Solar Cell Materials. Elsevier, 2020: 161-180.
[157] Fernandez D, Viterisi A, Ryan J W, et al. Small Molecule BHJ Solar Cells Based on DPP(TBFu)2 and Diphenylmethanofullerenes (DPM): Linking Morphology, Transport, Recombination and Crystallinity[J]. Nanoscale, 2014, 6(11): 5871-5878.
[158] Kirchartz T, Nelson J. Meaning of Reaction Orders in Polymer:Fullerene Solar Cells[J]. Physical Review B, 2012, 86(16): 165201.
[159] Ryan J W, Palomares E. Photo-Induced Charge Carrier Recombination Kinetics in Small Molecule Organic Solar Cells and the Influence of Film Nanomorphology[J]. Advanced Energy Materials, 2017, 7(10): 1601509.
[160] Shockley W, Queisser H J.Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.
[161] Veldman D, Ipek O, Meskers S C J, et al. Compositional and Electric Field Dependence of the Dissociation of Charge Transfer Excitons in Alternating Polyfluorene Copolymer/Fullerene Blends[J]. Journal of the American Chemical Society, 2008, 130(24): 7721-7735.
[162] Vandewal K, Tvingstedt K, Gadisa A, et al. On the Origin of the Open-Circuit Voltage of Polymer-Fullerene Solar Cells[J]. Nature materials, 2009, 8(11): 904-909.
[163] Liu J, Chen S, Qian D, et al. Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force[J]. Nature Energy, 2016, 1(7): 16089.
[164] Hou J, Inganäs O, Friend R H, et al. Organic Solar Cells Based on Non-Fullerene Acceptors[J]. Nature materials, 2018, 17(2): 119-128.
[165] Li C, Zhou J, Song J, et al. Non-Fullerene Acceptors with Branched Side Chains and Improved Molecular Packing to Exceed 18% Efficiency in Organic Solar Cells[J]. Nature Energy, 2021, 6(6): 605-613.
[166] Azzouzi M, Kirchartz T, Nelson J. Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells[J]. Trends in Chemistry, 2019, 1(1): 49-62.
[167] Gasparini N, Salleo A, McCulloch I, et al. The Role of the Third Component in Ternary Organic Solar Cells[J]. Nature Reviews Materials, 2019, 4(4): 229-242.
[168] Chen H, Guo Y, Chao P, et al. A Chlorinated Polymer Promoted Analogue Co-Donors for Efficient Ternary All-Polymer Solar Cells[J]. Science China Chemistry, 2019, 62(2): 238-244.
[169] Zheng Z, Yao H, Ye L, et al. PBDB-T and Its Derivatives: A Family of Polymer Donors Enables over 17% Efficiency in Organic Photovoltaics [J]. Materials Today, 2020, 35: 115-130.
[170] Ma Q, Jia Z, Meng L, et al. Promoting Charge Separation Resulting in Ternary Organic Solar Cells Efficiency over 17.5%[J]. Nano Energy, 2020, 78: 105272.
[171] Zheng Z, Awartani O M, Gautam B, et al. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency[J]. Advanced Materials, 2017, 29(5): 1604241.
[172] Zhou G, Ding H, Zhu L, et al. Photophysics, Morphology and Device Performances Correlation on Non-Fullerene Acceptor Based Binary and Ternary Solar Cells[J]. Journal of Energy Chemistry, 2020, 47: 180-187.
[173] An Q, Zhang F, Zhang J, et al. V Versatile Ternary Organic Solar Cells: A Critical Review[J]. Energy & Environmental Science, 2016, 9(2): 281-322.
[174] Zhan L, Li S, Zhang S, et al. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42444-42452.
[175] Wang C, Xu X, Zhang W, et al. Ternary Organic Solar Cells with Enhanced Open Circuit Voltage[J]. Nano Energy, 2017, 37: 24-31.
[176] Chen H, Qu J, Liu L, et al. Carrier Dynamics and Morphology Regulated by 1,8-Diiodooctane in Chlorinated Nonfullerene Polymer Solar Cells[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 936-942.
[177] Liu S, Liang Q, Yan J, et al. Distinguishing Limits on the Fill Factor in Organic Solar Cells Processed from Different Solvents: Charge Recombination Kinetics Vs. Charge Extraction[J]. Organic Electronics, 2018, 59: 427-431.
[178] Chao P, Liu L, Zhou J, et al. Multichloro-Substitution Strategy: Facing Low Photon Energy Loss in Nonfullerene Solar Cells[J]. ACS Applied Energy Materials, 2018, 1(11): 6549-6559.
[179] Mo D, Chen H, Zhu Y, et al. Synergistic Effect of Alkyl Chain and Chlorination Engineering on High-Performance Nonfullerene Acceptors[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28329-28336.
[180] Liu T, Luo Z, Chen Y, et al. A Nonfullerene Acceptor with A 1000 nm Absorption Edge Enables Ternary Organic Solar Cells with Improved Optical and Morphological Properties and Efficiencies over 15%[J]. Energy & Environmental Science, 2019, 12(8): 2529-2536.
[181] Zhong L, Gao L, Bin H, et al. High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor[J]. Advanced Energy Materials, 2017, 7(14): 1602215.
[182] Song X, Gasparini N, Nahid M M, et al. Dual Sensitizer and Processing-Aid Behavior of Donor Enables Efficient Ternary Organic Solar Cells[J]. Joule, 2019, 3(3): 846-857.
[183] Bartesaghi D, Pérez I D C, Kniepert J, et al. Competition between Recombination and Extraction of Free Charges Determines the Fill Factor of Organic Solar Cells[J]. Nature Communications, 2015, 6(1):7083.
[184] Yao H, Cui Y, Yu R, et al. Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with An Ultra-Narrow Band Gap[J]. Angewandte Chemie International Edition, 2017, 129(11): 3091-3095.
[185] Wang W, Zhao B, Cong Z, et al. Nonfullerene Polymer Solar Cells Based on a Main-Chain Twisted Low-Bandgap Acceptor with Power Conversion Efficiency of 13.2%[J]. ACS Energy Letters, 2018, 3(7): 1499-1507.
[186] Sajjad M T, Ward A J, Kästner C, et al. Controlling Exciton Diffusion and Fullerene Distribution in Photovoltaic Blends by Side Chain Modification[J]. The Journal of Physical Chemistry Letters, 2015, 6(15): 3054-3060.
[187] Mayer A C, Scully S R, Hardin B E, et al. Polymer-Based Solar Cells[J]. Materials Today, 2007, 10(11): 28-33.
[188] Sajjad M T, Blaszczyk O, Jagadamma L K, et al. Engineered Exciton Diffusion Length Enhances Device Efficiency in Small Molecule Photovoltaics[J]. Journal of Materials Chemistry A, 2018, 6(20): 9445-9450.
[189] Kirchartz T, Agostinelli T, Campoy-Quiles M, et al. Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge[J]. The Journal of Physical Chemistry Letters, 2012, 3(23): 3470-3475.

所在学位评定分委会
化学系
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343174
专题理学院_化学系
推荐引用方式
GB/T 7714
刘龙珠. 基于多元聚合物太阳能电池的效率优化研究[D]. 深圳. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749270-刘龙珠-化学系.pdf(11593KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘龙珠]的文章
百度学术
百度学术中相似的文章
[刘龙珠]的文章
必应学术
必应学术中相似的文章
[刘龙珠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。