[1] 王伟兴, 康庆华, 董帆, et al. 国内外能源利用现状分析[J]. 云南化工, 2019, 46(06): 48-49.
[2] Williams R. Becquerel. Photovoltaic Effect in Binary Compounds[J]. The Journal of Chemical Physics, 1960, 32(5): 1505-1514.
[3] 梁启超, 乔芬, 杨健, et al. 太阳能电池的研究现状与进展[J]. 中国材料进展,2019, 38(05): 505-511.
[4] 李忠贤.太阳能电池研究现状[J]. 信息记录材料, 14(3): 58-61.
[5] Tang C W. Two-Layer Organic Photovoltaic Cell.[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[6] Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
[7] Stalmach U, de Boer B, Videlot C, et al. Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques[J]. Journal of the American Chemical Society, 2000, 122(23): 5464-5472.
[8] Padinger F, Rittberger R S, Sariciftci N S. Effects of Postproduction Treatment on Plastic Solar Cells[J]. Advanced Functional Materials, 2003, 13(1): 85-88.
[9] Li G, Shrotriya V, Huang J, et al. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends[J]. Nature Materials, 2005, 4(11): 864-868.
[10] Chen H-Y, Hou J, Zhang S, et al. Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency[J]. Nature Photonics, 2009, 3(11): 649-653.
[11] Liang Y, Xu Z, Xia J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20): E135-E138.
[12] He Z, Zhong C, Su S, et al. Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure[J]. Nature Photonics, 2012, 6(9): 591-595.
[13] Lin Y, Wang J, Zhang Z G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[14] Liao S H, Hou J, Cheng Y S, et al. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance[J]. Advanced materials, 2013, 25(34): 4766-4771.
[15] Zhao W, Qian D, Zhang S, et al. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability[J]. Advanced materials, 2016, 28(23): 4734-4739.
[16] Zhao W, Li S, Yao H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.
[17] Li W, Ye L, Li S, et al. A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor[J]. Advanced Materials, 2018, 30(16): 1707170.
[18] Meng L, Zhang Y, Wan X, et al. Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency[J]. Science, 2018, 361(6407): 1094-1098.
[19] Yuan J, Zhang Y, Zhou L, et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core[J]. Joule, 2019, 3(4): 1140-1151.
[20] Fan Q, Su W, Wang Y, et al. Synergistic Effect of Fluorination on Both Donor and Acceptor Materials for High Performance Non-Fullerene Polymer Solar Cells with 13.5% Efficiency[J]. Science China Chemistry, 2018, 61(5): 531-537.
[21] Cui Y, Yao H, Zhang J, et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency[J]. Advanced Materials, 2020, 32(19): 1908205.
[22] Wang J, Zheng Z, Zu Y, et al. A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control[J]. Advanced Materials, 2021, 33(39): 2102787.
[23] Cui Y, Xu Y, Yao H, et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency [J]. Advanced Materials, 2021, 33(41): e2102420.
[24] Wang G, Adil M A, Zhang J, et al. Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods [J]. Advanced Materials, 2019, 31(45): 1805089.
[25] Dong S, Jia T, Zhang K, et al. Single-Component Non-Halogen Solvent-Processed High-Performance Organic Solar Cell Module with Efficiency over 14%[J]. Joule, 2020, 4(9): 2004-2016.
[26] Corzo D, Almasabi K, Bihar E, et al. Digital Inkjet Printing of High‐Efficiency Large‐Area Nonfullerene Organic Solar Cells[J]. Advanced Materials Technologies, 2019, 4(7): 1900040.
[27] Søndergaard R, Hösel M, Angmo D, et al. Roll-to-Roll Fabrication of Polymer Solar Cells [J]. Materials Today,2012, 15(1-2): 36-49.
[28] Sun Y, Chang M, Meng L, et al. Flexible Organic Photovoltaics Based on Water-Processed Silver Nanowire Electrodes [J]. Nature Electronics, 2019, 2(11): 513-520.
[29] Qin F, Sun L, Chen H, et al. 54 cm2 Large-Area Flexible Organic Solar Modules with Efficiency above 13%[J]. Advanced Materials, 2021, 33(39): 2103017.
[30] Zheng W, Luo X, Zhang Y, et al. Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23190-23198.
[31] Jiang T, Zhang G, Xia R, et al. Semitransparent Organic Solar Cells Based on All-Low-Bandgap Donor and Acceptor Materials and Their Performance Potential[J]. Materials Today Energy, 2021, 21: 100807.
[32] Cui Y, Wang Y, Bergqvist J, et al. Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications[J]. Nature Energy,2019, 4(9): 768-775.
[33] Xia R, Brabec C J, Yip H L, et al. High-Throughput Optical Screening for Efficient Semitransparent Organic Solar Cells[J]. Joule, 2019, 3(9): 2241-2254.
[34] Kearns D, Calvin M. Photovoltaic Effect and Photoconductivity in Laminated Organic Systems[J]. The Journal of Chemical Physics, 1958, 29(4): 950-951.
[35] Chen P, Nakano K, Suzuki K, et al. Organic Solar Cells with Controlled Nanostructures Based on Microphase Separation of Fullerene-Attached Thiophene-Selenophene Heteroblock Copolymers[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4758-4768.
[36] Zhang F, Svensson M, Andersson M R, et al. Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes[J]. Advanced Materials, 2001, 13(24): 1871-1874.
[37] Ramos A M, Rispens M T, van Duren J K J, et al. Photoinduced Electron Transfer and Photovoltaic Devices of A Conjugated Polymer with Pendant Fullerenes[J]. Journal of the American Chemical Society, 2001, 123(27): 6714-6715.
[38] Feng G, Li J, He Y, et al. Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells[J]. Joule, 2019, 3(7): 1765-1781.
[39] Mitchell V D, Jones D J. Advances toward the Effective Use of Block Copolymers as Organic Photovoltaic Active Layers[J]. Polymer Chemistry, 2018, 9(7): 795-814.
[40] Guo C, Lin Y H, Witman M D, et al. Conjugated Block Copolymer Photovoltaics with near 3% Efficiency through Microphase Separation [J]. Nano Letters, 2013, 13(6): 2957-2963.
[41] Li S, Yuan X, Zhang Q, et al. Narrow-Bandgap Single-Component Polymer Solar Cells with Approaching 9% Efficiency[J]. Advanced Materials, 2021, 33(32): 2101295.
[42] Aubele A, He Y, Kraus T, et al. Molecular Oligothiophene-Fullerene Dyad Reaching over 5% Efficiency in Single-Material Organic Solar Cells [J]. Advanced Materials, 2021: 2103573.
[43] Wang W, Sun R, Guo J, et al. An Oligothiophene-Fullerene Molecule with a Balanced Donor-Acceptor Backbone for High-Performance Single-Component Organic Solar Cells[J]. Angewandte Chemie International Edition, 2019, 58(41): 14556-14561.
[44] Nguyen T L, Lee T H, Gautam B, et al. Single Component Organic Solar Cells Based on Oligothiophene‐Fullerene Conjugate[J]. Advanced Functional Materials, 2017, 27(39): 1702474.
[45] Segura J L, Martín N, Guldi D M. Materials for Organic Solar Cells: The C60/Pi-Conjugated Oligomer Approach[J]. Chemical Society Reviews, 2005, 34(1): 31-47.
[46] Roncali J. Single Material Solar Cells: The Next Frontier for Organic Photovoltaics?[J]. Advanced Energy Materials, 2011, 1(2): 147-160.
[47] Roncali J, Grosu I. The Dawn of Single Material Organic Solar Cells[J]. Advanced Science, 2019, 6(1): 1801026.
[48] 李韦伟. 给体/受体双缆型共轭聚合物材料及其单组分有机太阳能电池器件[J]. 高分子学报, 2019, 50(03): 209-218.
[49] Jiang X, Yang J, Karuthedath S, et al. Miscibility-Controlled Phase Separation in Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiencies over 8%[J]. Angewandte Chemie International Edition, 2020, 132(48): 21867-21876.
[50] Wu Y, Guo J, Wang W, et al. A Conjugated Donor-Acceptor Block Copolymer Enables over 11% Efficiency for Single-Component Polymer Solar Cells[J]. Joule, 2021, 5(7): 1800-1815.
[51] Wang Y, Zhan X. Layer-by-Layer Processed Organic Solar Cells[J]. Advanced Energy Materials, 2016, 6(17): 1600414.
[52] Zimmerman J D, Song B, Griffith O, et al. Exciton-Blocking Phosphonic Acid-Treated Anode Buffer Layers for Organic Photovoltaics[J]. Applied Physics Letters, 2013, 103(24): 243905.
[53] Rand B P, Li J, Xue J, et al. Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(Acetylacetonato)Ruthenium(III) Exciton-Blocking Layers[J]. Advanced Materials, 2005, 17(22): 2714-2718.
[54] Peumans P, Forrest S R. Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells[J]. Applied Physics Letters, 2001, 79(1): 126-128.
[55] Ayzner A L, Tassone C J, Tolbert S H, et al. Reappraising the Need for Bulk Heterojunctions in Polymer−Fullerene Photovoltaics: the Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells[J]. The Journal of Physical Chemistry C, 2009, 113(46): 20050-20060.
[56] Liu Y, Liu F, Wang H W, et al. Sequential Deposition: Optimization of Solvent Swelling for High-Performance Polymer Solar Cells[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 653-661.
[57] Kim Y J, Park C E. Well Defined Double Layers Via Binary Solvent Mixtures for Highly Efficient Inverted All-Polymer Solar Cells[J]. Organic Electronics, 2018, 52: 301-308.
[58] Cheng P, Yan C, Wu Y, et al. Efficient and Stable Organic Solar Cells Via a Sequential Process[J]. Journal of Materials Chemistry C, 2016, 4(34): 8086-8093.
[59] Dong S, Zhang K, Xie B, et al. High-Performance Large-Area Organic Solar Cells Enabled by Sequential Bilayer Processing Via Nonhalogenated Solvents[J]. Advanced Energy Materials, 2019, 9(1): 1802832.
[60] Chen H, Zhao T, Li L, et al. 17.6%-Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3d Network Acceptor[J]. Advanced Materials, 2021, 33 (37): 2102778.
[61] Wang X, Zhang L, Hu L, et al. High‐Efficiency (16.93%) Pseudo‐Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy[J]. Advanced Functional Materials, 2021, 31(33): 2102291.
[62] Wan J, Zhang L, He Q, et al. High‐Performance Pseudoplanar Heterojunction Ternary Organic Solar Cells with Nonfullerene Alloyed Acceptor[J]. Advanced Functional Materials, 2020, 30(14): 1909760.
[63] Li Y, Lin Y. Planar Heterojunctions for Reduced Non-Radiative Open-Circuit Voltage Loss and Enhanced Stability of Organic Solar Cells[J]. Journal of Materials Chemistry C, 2021, 9(35): 11715-11721.
[64] Yu R, Wei X, Wu G, et al. Layer‐by‐Layered Organic Solar Cells: Morphology Optimizing Strategies and Processing Techniques[J]. Aggregate, 2021: e107.
[65] Fu H, Gao W, Li Y, et al. A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells[J]. Small Methods, 2020, 4(12): 2000687.
[66] Hong L, Yao H, Cui Y, et al. Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction[J]. Advanced Materials, 2021, 33(43): 2103091.
[67] Siegmund B, Sajjad M T, Widmer J, et al. Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells[J]. Advanced Materials, 2017, 29(12): 1604424.
[68] Kim S H, Saeed M A, Lee S Y, et al. Investigating the Indoor Performance of Planar Heterojunction Based Organic Photovoltaics[J]. IEEE Journal of Photovoltaics, 2021, 11(4): 997-1003.
[69] You J, Dou L, Hong Z, et al. Recent Trends in Polymer Tandem Solar Cells Research[J]. Progress in Polymer Science,2013, 38(12): 1909-1928.
[70] Hiramoto M, Suezaki M, Yokoyama M. Effect of Thin Gold Interstitial-Layer on the Photovoltaic Properties of Tandem Organic Solar Cell[J]. Chemistry Letters, 1990, 19(3): 327-330.
[71] Yakimov A, Forrest S R. High Photovoltage Multiple-Heterojunction Organic Solar Cells Incorporating Interfacial Metallic Nanoclusters[J]. Applied Physics Letters, 2002, 80(9): 1667-1669.
[72] Hadipour A, de Boer B, Wildeman J, et al. Solution-Processed Organic Tandem Solar Cells[J]. Advanced Functional Materials, 2006, 16(14): 1897-1903.
[73] Kim J Y, Lee K, Coates N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing[J]. Science, 2007, 317(5835): 222-225.
[74] Dou L, You J, Yang J, et al. Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer[J]. Nature Photonics, 2012, 6(3): 180-185.
[75] You J, Dou L, Yoshimura K, et al. [J]. Nature Communications, 2013, 4(1): 1446.
[76] Li M, Gao K, Wan X, et al. Solution-Processed Organic Tandem Solar Cells with Power Conversion Efficiencies >12%[J]. Nature Photonics, 2016, 11(2): 85-90.
[77] Zheng Z, Wang J, Bi P, et al. Tandem Organic Solar Cell with 20.2% Efficiency[J]. Joule, 2022, 6(1): 171-184.
[78] Lloyd M T, Mayer A C, Tayi A S, et al. Photovoltaic Cells from a Soluble Pentacene Derivative[J]. Organic Electronics, 2006, 7(5): 243-248.
[79] Sun X, Zhou Y, Wu W, et al. X-shaped Oligothiophenes as A New Class of Electron Donors for Bulk-heterojunction Solar Cells[J]. The Journal of Physical Chemistry B, 2006, 110(15): 7702-7707.
[80] Roncali J, Frere P, Blanchard P, et al. Molecular and Supramolecular Engineering of Π-Conjugated Systems for Photovoltaic Conversion[J]. Thin Solid Films, 2006, 511: 567-575.
[81] Walker B, Kim C, Nguyen T Q. Small Molecule Solution-Processed Bulk Heterojunction Solar Cells[J]. Chemistry of Materials, 2010, 23(3): 470-482.
[82] Walker B, Tamayo A B, Dang X D, et al. Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells[J]. Advanced Functional Materials, 2009, 19(19): 3063-3069.
[83] Sun Y, Welch G C, Leong W L, et al. Solution-Processed Small-Molecule Solar Cells with 6.7% Efficiency[J]. Nature Materials, 2011, 11(1): 44-48.
[84] Zhou J, Zuo Y, Wan X, et al. Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit[J]. Journal of the American Chemical Society, 2013, 135(23): 8484-8487.
[85] Kan B, Li M, Zhang Q, et al. A Series of Simple Oligomer-Like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency[J]. Journal of the American Chemical Society, 2015, 137(11): 3886-3893.
[86] Sun K, Xiao Z, Lu S, et al. A Molecular Nematic Liquid Crystalline Material for High-Performance Organic Photovoltaics[J]. Nature Communications, 2015, 6(1): 6013.
[87] Zhou Z, Xu S, Song J, et al. High-Efficiency Small-Molecule Ternary Solar Cells with a Hierarchical Morphology Enabled by Synergizing Fullerene and Non-Fullerene Acceptors[J]. Nature Energy, 2018, 3(11): 952-959.
[88] Zhou R, Jiang Z, Yang C, et al. All-Small-Molecule Organic Solar Cells with over 14% Efficiency by Optimizing Hierarchical Morphologies [J]. Nature Communications, 2019, 10(1): 5393.
[89] Chen H, Hu D, Yang Q, et al. All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor[J]. Joule, 2019, 3(12): 3034-3047.
[90] Yue Q, Wu H, Zhou Z, et al. 13.7% Efficiency Small-Molecule Solar Cells Enabled by a Combination of Material and Morphology Optimization[J]. Advanced Materials, 2019, 31(51): 1904283.
[91] Ge J, Xie L, Peng R, et al. 13.34 % Efficiency Non-Fullerene All-Small-Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors Via a Fluorination Strategy[J]. Angewandte Chemie International Edition, 2020, 59(7): 2808-2815.
[92] Sun R, Wu Y, Guo J, et al. High-Performance All-Small-Molecule Organic Solar Cells without Interlayers[J]. Energy & Environmental Science, 2021, 14 (5): 3174-3183.
[93] Zhang Z, Deng D, Li Y, et al. Polymerized Small‐Molecule Acceptor as an Interface Modulator to Increase the Performance of All‐Small‐Molecule Solar Cells[J]. Advanced Energy Materials, 2021: 2102394.
[94] Hu D, Yang Q, Zheng Y, et al. 15.3% Efficiency All-Small-Molecule Organic Solar Cells Achieved by A Locally Asymmetric F, Cl Disubstitution Strategy[J]. Advanced Science, 2021, 8(8): 2004262.
[95] Guo J, Qiu B, Yang D, et al. 15.71% Efficiency All‐Small‐Molecule Organic Solar Cells Based on Low‐Cost Synthesized Donor Molecules[J]. Advanced Functional Materials, 2021: 2110159.
[96] Qin J, Chen Z, Bi P, et al. 17% Efficiency All-Small-Molecule Organic Solar Cells Enabled by Nanoscale Phase Separation with a Hierarchical Branched Structure[J]. Energy & Environmental Science, 2021, 14(11): 5903-5910.
[97] 何畅, 侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[98] Xu Y, Yuan J, Zhou S, et al. Ambient Processable and Stable All-Polymer Organic Solar Cells[J]. Advanced Functional Materials, 2019, 29(8): 1806747.
[99] Yu G, Heeger A J. Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor/Acceptor Heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515.
[100] Zhan X, Tan Z, Domercq B, et al. A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells[J]. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
[101] Yan H, Chen Z, Zheng Y, et al. A High-Mobility Electron-Transporting Polymer for Printed Transistors[J]. Nature, 2009, 457(7230): 679-686.
[102] Moore J R, Albert‐Seifried S, Rao A, et al. Polymer Blend Solar Cells Based on a High-Mobility Naphthalenediimide-Based Polymer Acceptor: Device Physics, Photophysics and Morphology[J]. Advanced Energy Materials, 2011, 1(2): 230-240.
[103] Tang Y, McNeill C R. All-Polymer Solar Cells Utilizing Low Band Gap Polymers as Donor and Acceptor[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(6): 403-409.
[104] Li Z, Xu X, Zhang W, et al. High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing[J]. Journal of the American Chemical Society, 2016, 138(34): 10935-10944.
[105] Ji X, Xiao Z, Sun H, et al. Polymer Acceptors for All-Polymer Solar Cells[J]. Journal of Semiconductors, 2021, 42(8): 080202.
[106] Zhang Z G, Yang Y, Yao J, et al. Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507.
[107] Wang H, Chen H, Xie W, et al. Configurational Isomers Induced Significant Difference in All‐Polymer Solar Cells[J]. Advanced Functional Materials, 2021, 31 (26): 2100877.
[108] Liu T, Yang T, Ma R, et al. 16% Efficiency All-Polymer Organic Solar Cells Enabled by a Finely Tuned Morphology Via the Design of Ternary Blend[J]. Joule, 2021, 5(4): 914-930.
[109] Sun R, Wang W, Yu H, et al. Achieving over 17% Efficiency of Ternary All-Polymer Solar Cells with Two Well-Compatible Polymer Acceptors[J]. Joule, 2021, 5(6): 1548-1565.
[110] Wang G, Melkonyan F S, Facchetti A, et al. All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects[J]. Angewandte Chemie International Edition, 2019, 58(13): 4129-4142.
[111] Yang L, Yan L, You W. Organic Solar Cells Beyond One Pair of Donor-Acceptor: Ternary Blends and More [J]. The Journal of Physical Chemistry Letters, 2013, 4(11): 1802-1810.
[112] Kim H, Shin M, Kim Y. Distinct Annealing Temperature in Polymer: Fullerene: Polymer Ternary Blend Solar Cells[J]. The Journal of Physical Chemistry C, 2009, 113(4): 1620-1623.
[113] Lu L, Xu T, Chen W, et al. Ternary Blend Polymer Solar Cells with Enhanced Power Conversion Efficiency[J]. Nature Photonics, 2014, 8(9): 716-722.
[114] Hwang Y J, Li H, Courtright B A E, et al. Nonfullerene Polymer Solar Cells with 8.5% Efficiency Enabled by a New Highly Twisted Electron Acceptor Dimer[J]. Advanced Materials, 2016, 28(1): 124-131.
[115] Zhao W, Li S, Zhang S, et al. Ternary Polymer Solar Cells Based on Two Acceptors and One Donor for Achieving 12.2% Efficiency[J]. Advanced Materials, 2017, 29(2): 1604059.
[116] Xiao Z, Jia X, Ding L. Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency[J]. Science Bulletin, 2017, 62(23): 1562-1564.
[117] Wen Z C, Yin H, Hao X T. Recent Progress of Pm6:Y6-Based High Efficiency Organic Solar Cells[J]. Surfaces and Interfaces, 2021, 23: 100921.
[118] Donaghey J E, Armin A, Burn P L, et al. Dielectric Constant Enhancement of Non-Fullerene Acceptors via Side-Chain Modification[J]. Chemical Communications, 2015, 51(74): 14115-14118.
[119] Koster L J A, Shaheen S E, Hummelen J C. Pathways to a New Efficiency Regime for Organic Solar Cells[J]. Advanced Energy Materials, 2012, 2(10): 1246-1253.
[120] Knupfer M. Exciton Binding Energies in Organic Semiconductors[J]. Applied Physics A, 2003, 77(5): 623-626.
[121] Mikhnenko O V, Blom P W M, Nguyen T-Q. Exciton Diffusion in Organic Semiconductors[J]. Energy & Environmental Science, 2015, 8(7): 1867-1888.
[122] Sajjad M T, Ruseckas A, Samuel I D W. Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics[J]. Matter, 2020, 3(2): 341-354.
[123] Tamai Y, Fan Y, Kim V O, et al. Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells[J]. ACS nano, 2017, 11(12): 12473-12481.
[124] Gélinas S, Rao A, Kumar A, et al. Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes[J]. Science, 2014, 343(6170): 512-516.
[125] Koppe M, Egelhaaf H J, Dennler G, et al. Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells[J]. Advanced Functional Materials, 2010, 20(2): 338-346.
[126] Liu S, You P, Li J, et al. Enhanced Efficiency of Polymer Solar Cells by Adding a High-Mobility Conjugated Polymer[J]. Energy & Environmental Science, 2015, 8(5): 1463-1470.
[127] Li D, Zhu L, Liu X, et al. Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells over 17% Efficiency[J]. Advanced Materials, 2020, 32(34): 2002344.
[128] Min J, Ameri T, Gresser R, et al. Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-Bodipy Dyes as near-Ir Sensitizers for Ternary Solar Cells[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5609-5616.
[129] Nian L, Gao K, Liu F, et al. 11% Efficient Ternary Organic Solar Cells with High Composition Tolerance via Integrated Near-IR Sensitization and Interface Engineering[J]. Advanced Materials, 2016, 28(37): 8184-8190.
[130] Ma R, Liu T, Luo Z, et al. Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells[J]. ACS Energy Letters, 2020, 5(8): 2711-2720.
[131] An Q, Zhang F, Zhang J, et al. Enhanced Performance of Polymer Solar Cells through Sensitization by A Narrow Band Gap Polymer[J]. Solar Energy Materials and Solar Cells, 2013, 118: 30-35.
[132] Yang L, Zhou H, Price S C, et al. Parallel-Like Bulk Heterojunction Polymer Solar Cells[J]. Journal of the American Chemical Society, 2012, 134(12): 5432-5435.
[133] Xu X, Deng M, Lee Y W, et al. Realizing High-Efficiency Multiple Blend Polymer Solar Cells Via a Unique Parallel-Series Working Mechanism[J]. Journal of Materials Chemistry A, 2019, 7(43): 24937-24946.
[134] Zhang W, Huang J, Xu J, et al. Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells Via Parallel‐Like Ternary and Quaternary Strategies[J]. Advanced Energy Materials, 2020, 10(32): 2001436.
[135] Khlyabich P P, Burkhart B, Thompson B C. Efficient Ternary Blend Bulk Heterojunction Solar Cells with Tunable Open-Circuit Voltage[J]. Journal of the American Chemical Society, 2011, 133(37): 14534-14537.
[136] Street R A, Davies D, Khlyabich P P, et al. Origin of the Tunable Open-Circuit Voltage in Ternary Blend Bulk Heterojunction Organic Solar Cells[J]. Journal of the American Chemical Society, 2013, 135(3): 986-989.
[137] Zhang J, Zhang Y, Fang J, et al. Conjugated Polymer-Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells[J]. Journal of the American Chemical Society, 2015, 137(25): 8176-8183.
[138] An Q, Wang J, Ma X, et al. Two Compatible Polymer Donors Contribute Synergistically for Ternary Organic Solar Cells with 17.53% Efficiency[J]. Energy & Environmental Science, 2020, 13(12): 5039-5047.
[139] Bi P, Zhang S, Chen Z, et al. Reduced Non-Radiative Charge Recombination Enables Organic Photovoltaic Cell Approaching 19% Efficiency[J]. Joule, 2021, 5(9): 2408-2419.
[140] Zuo L, Jo S B, Li Y, et al. Dilution Effect for Highly Efficient Multiple-Component Organic Solar Cells[J]. Nature Nanotechnology, 2022, 17: 53-60.
[141] Arunagiri L, Peng Z, Zou X, et al. Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells[J]. Joule, 2020, 4(8): 1790-1805.
[142] Li X, Zhou L, Lu X, et al. Hydrogen Bond Induced High-Performance Quaternary Organic Solar Cells with Efficiency up to 17.48% and Superior Thermal Stability[J]. Materials Chemistry Frontiers, 2021, 5(10): 3850-3858.
[143] Zhang M, Zhu L, Zhou G, et al. Single-Layered Organic Photovoltaics with Double Cascading Charge Transport Pathways: 18% Efficiencies[J]. Nature Communications, 2021, 12(1): 309.
[144] Scharber M C, Mühlbacher D, Koppe M, et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency[J]. Advanced Materials, 2006, 18(6): 789-794.
[145] Rivnay J, Mannsfeld S C B, Miller C E, et al. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale[J]. Chemical reviews, 2012, 112(10): 5488-5519.
[146] Jiang Z. A Matlab Toolbox for Grazing-Incidence X-Ray Scattering Data Visualization and Reduction, and Indexing of Buried Three-Dimensional Periodic Nanostructured Films [J]. Journal of Applied Crystallography, 2015, 48(3): 917-926.
[147] Xiao Y, Lu X. Morphology of Organic Photovoltaic Non-Fullerene Acceptors Investigated by Grazing Incidence X-Ray Scattering Techniques[J]. Materials Today Nano, 2019, 5: 100030.
[148] Meskers S C J, van Hal P A, Spiering A J H, et al. Time-Resolved Infrared-Absorption Study of Photoinduced Charge Transfer in A Polythiophene-Methanofullerene Composite Film[J]. Physical Review B, 2000, 61(15): 9917.
[149] Schilinsky P, Waldauf C, Brabec C J. Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors[J]. Applied Physics Letters, 2002, 81(20): 3885-3887.
[150] Koster L J A, Mihailetchi V D, Xie H, et al. Origin of the Light Intensity Dependence of the Short-Circuit Current of Polymer/Fullerene Solar Cells[J]. Applied Physics Letters, 2005, 87(20): 203502.
[151] Koster L J A, Smits E C P, Mihailetchi V D, et al. Device Model for the Operation of Polymer/Fullerene Bulk Heterojunction Solar Cells[J]. Physical Review B, 2005, 72(8): 085205.
[152] Schilinsky P, Waldauf C, Hauch J, et al. Simulation of Light Intensity Dependent Current Characteristics of Polymer Solar Cells[J]. Journal of Applied Physics, 2004, 95(5): 2816-2819.
[153] Koster L J A, Mihailetchi V D, Ramaker R, et al. Light Intensity Dependence of Open-Circuit Voltage of Polymer:Fullerene Solar Cells[J]. Applied physics letters, 2005, 86(12): 123509.
[154] Street R A. Localized State Distribution and Its Effect on Recombination in Organic Solar Cells[J]. Physical Review B, 2011, 84(7): 075208.
[155] Maurano A, Shuttle C G, Hamilton R, et al. T Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5947-5957.
[156] Palomares E, Montcada N F, Méndez M, et al. Photovoltage/photocurrent Transient Techniques[M]. Characterization Techniques for Perovskite Solar Cell Materials. Elsevier, 2020: 161-180.
[157] Fernandez D, Viterisi A, Ryan J W, et al. Small Molecule BHJ Solar Cells Based on DPP(TBFu)2 and Diphenylmethanofullerenes (DPM): Linking Morphology, Transport, Recombination and Crystallinity[J]. Nanoscale, 2014, 6(11): 5871-5878.
[158] Kirchartz T, Nelson J. Meaning of Reaction Orders in Polymer:Fullerene Solar Cells[J]. Physical Review B, 2012, 86(16): 165201.
[159] Ryan J W, Palomares E. Photo-Induced Charge Carrier Recombination Kinetics in Small Molecule Organic Solar Cells and the Influence of Film Nanomorphology[J]. Advanced Energy Materials, 2017, 7(10): 1601509.
[160] Shockley W, Queisser H J.Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.
[161] Veldman D, Ipek O, Meskers S C J, et al. Compositional and Electric Field Dependence of the Dissociation of Charge Transfer Excitons in Alternating Polyfluorene Copolymer/Fullerene Blends[J]. Journal of the American Chemical Society, 2008, 130(24): 7721-7735.
[162] Vandewal K, Tvingstedt K, Gadisa A, et al. On the Origin of the Open-Circuit Voltage of Polymer-Fullerene Solar Cells[J]. Nature materials, 2009, 8(11): 904-909.
[163] Liu J, Chen S, Qian D, et al. Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force[J]. Nature Energy, 2016, 1(7): 16089.
[164] Hou J, Inganäs O, Friend R H, et al. Organic Solar Cells Based on Non-Fullerene Acceptors[J]. Nature materials, 2018, 17(2): 119-128.
[165] Li C, Zhou J, Song J, et al. Non-Fullerene Acceptors with Branched Side Chains and Improved Molecular Packing to Exceed 18% Efficiency in Organic Solar Cells[J]. Nature Energy, 2021, 6(6): 605-613.
[166] Azzouzi M, Kirchartz T, Nelson J. Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells[J]. Trends in Chemistry, 2019, 1(1): 49-62.
[167] Gasparini N, Salleo A, McCulloch I, et al. The Role of the Third Component in Ternary Organic Solar Cells[J]. Nature Reviews Materials, 2019, 4(4): 229-242.
[168] Chen H, Guo Y, Chao P, et al. A Chlorinated Polymer Promoted Analogue Co-Donors for Efficient Ternary All-Polymer Solar Cells[J]. Science China Chemistry, 2019, 62(2): 238-244.
[169] Zheng Z, Yao H, Ye L, et al. PBDB-T and Its Derivatives: A Family of Polymer Donors Enables over 17% Efficiency in Organic Photovoltaics [J]. Materials Today, 2020, 35: 115-130.
[170] Ma Q, Jia Z, Meng L, et al. Promoting Charge Separation Resulting in Ternary Organic Solar Cells Efficiency over 17.5%[J]. Nano Energy, 2020, 78: 105272.
[171] Zheng Z, Awartani O M, Gautam B, et al. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency[J]. Advanced Materials, 2017, 29(5): 1604241.
[172] Zhou G, Ding H, Zhu L, et al. Photophysics, Morphology and Device Performances Correlation on Non-Fullerene Acceptor Based Binary and Ternary Solar Cells[J]. Journal of Energy Chemistry, 2020, 47: 180-187.
[173] An Q, Zhang F, Zhang J, et al. V Versatile Ternary Organic Solar Cells: A Critical Review[J]. Energy & Environmental Science, 2016, 9(2): 281-322.
[174] Zhan L, Li S, Zhang S, et al. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42444-42452.
[175] Wang C, Xu X, Zhang W, et al. Ternary Organic Solar Cells with Enhanced Open Circuit Voltage[J]. Nano Energy, 2017, 37: 24-31.
[176] Chen H, Qu J, Liu L, et al. Carrier Dynamics and Morphology Regulated by 1,8-Diiodooctane in Chlorinated Nonfullerene Polymer Solar Cells[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 936-942.
[177] Liu S, Liang Q, Yan J, et al. Distinguishing Limits on the Fill Factor in Organic Solar Cells Processed from Different Solvents: Charge Recombination Kinetics Vs. Charge Extraction[J]. Organic Electronics, 2018, 59: 427-431.
[178] Chao P, Liu L, Zhou J, et al. Multichloro-Substitution Strategy: Facing Low Photon Energy Loss in Nonfullerene Solar Cells[J]. ACS Applied Energy Materials, 2018, 1(11): 6549-6559.
[179] Mo D, Chen H, Zhu Y, et al. Synergistic Effect of Alkyl Chain and Chlorination Engineering on High-Performance Nonfullerene Acceptors[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28329-28336.
[180] Liu T, Luo Z, Chen Y, et al. A Nonfullerene Acceptor with A 1000 nm Absorption Edge Enables Ternary Organic Solar Cells with Improved Optical and Morphological Properties and Efficiencies over 15%[J]. Energy & Environmental Science, 2019, 12(8): 2529-2536.
[181] Zhong L, Gao L, Bin H, et al. High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor[J]. Advanced Energy Materials, 2017, 7(14): 1602215.
[182] Song X, Gasparini N, Nahid M M, et al. Dual Sensitizer and Processing-Aid Behavior of Donor Enables Efficient Ternary Organic Solar Cells[J]. Joule, 2019, 3(3): 846-857.
[183] Bartesaghi D, Pérez I D C, Kniepert J, et al. Competition between Recombination and Extraction of Free Charges Determines the Fill Factor of Organic Solar Cells[J]. Nature Communications, 2015, 6(1):7083.
[184] Yao H, Cui Y, Yu R, et al. Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with An Ultra-Narrow Band Gap[J]. Angewandte Chemie International Edition, 2017, 129(11): 3091-3095.
[185] Wang W, Zhao B, Cong Z, et al. Nonfullerene Polymer Solar Cells Based on a Main-Chain Twisted Low-Bandgap Acceptor with Power Conversion Efficiency of 13.2%[J]. ACS Energy Letters, 2018, 3(7): 1499-1507.
[186] Sajjad M T, Ward A J, Kästner C, et al. Controlling Exciton Diffusion and Fullerene Distribution in Photovoltaic Blends by Side Chain Modification[J]. The Journal of Physical Chemistry Letters, 2015, 6(15): 3054-3060.
[187] Mayer A C, Scully S R, Hardin B E, et al. Polymer-Based Solar Cells[J]. Materials Today, 2007, 10(11): 28-33.
[188] Sajjad M T, Blaszczyk O, Jagadamma L K, et al. Engineered Exciton Diffusion Length Enhances Device Efficiency in Small Molecule Photovoltaics[J]. Journal of Materials Chemistry A, 2018, 6(20): 9445-9450.
[189] Kirchartz T, Agostinelli T, Campoy-Quiles M, et al. Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge[J]. The Journal of Physical Chemistry Letters, 2012, 3(23): 3470-3475.
修改评论