中文版 | English
题名

基于光纤水听器的OFDM水声通信研究

其他题名
RESEARCH ON OFDM UNDERWATER ACOUSTIC COMMUNICATION BASED ON OPTICAL FIBER HYDROPHONE
姓名
姓名拼音
HUANG Keqin
学号
12032559
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
宋章启
导师单位
创新创业学院
论文答辩日期
2022-05-13
论文提交日期
2022-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

水声通信是目前水下中远距离无线通信的最佳方案,由于水声信道多途和时
变的特性,使得水声通信系统的实现面临很多困难。本文开展了基于光纤水听器
的正交频分复用(OFDM)水声通信关键技术研究。
开展了基于块状导频的自适应信道均衡技术的研究,针对 OFDM 通信进行了
LMS 和 RLS 自适应均衡算法仿真研究,验证了在水声信道的多径和时变影响下,
有效跟踪信道变化的能力,并获得了优化参数。
针对 OFDM 通信过程中存在的峰值平均功率比(PAPR)过大的问题,创新性
地提出了一种基于自适应信道均衡的相位随机抖动的方法,并进行了其原理的理
论推导、数字仿真验证和实验测试,结果表明其相较于传统 PAPR 抑制方法具有
对信号适应性好的特点,可以将任意输入信号的 PAPR 控制在 12dB 以内,同时无
论在发射端还是在接收端都没有增加额外计算量,且不需要消耗通信带宽。
最后,论文基于新型 Sagnac 光纤水听器系统开展了实际水声通信实验,利用
光纤水听器的高灵敏度特点,获得比压电水听器高 6dB 的信噪比信号,开展了在
实验室声压罐和水池条件的 OFDM 水声通信实验,成功进行了文本图片等数据的
传输。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1]王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状[J]. 信号处理, 2019, 35(9): 9.
[2]葛威. 强干扰环境下单载波水声通信技术研究[D]. 哈尔滨工程大学, 2021.
[3]王毅凡, 周密, 宋志慧. 水下无线通信技术发展研究[J]. 通信技术, 2014, 47(6): 6.
[4]曾凤娇, 杨康建, 晏旭, 等. 水下激光通信系统研究进展[J]. 激光与光电子学进展, 2021, 58(3): 12.
[5]FREITAG L. The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms[C]//Proceedings of OCEANS 2005 MTS/IEEE. 2005.
[6]FREITAG L, STOJANOVIC M. Basin-scale acoustic communication: a feasibility study using tomography m-sequences[C]//2001.
[7]张建华, 孙卫华. 潜艇水下隐蔽通信技术研究[J]. 舰船电子工程, 2010, 030(002): 24-26.
[8]谢睿. 移动节点水声通信信道估计和均衡算法研究[D]. 电子科技大学, 2020.
[9]MASASHI, TAKEMURA, YOSHIKI, et al. An Off-Line Underwater Acoustic Software Mo-dem for Multiple Differential Detection Employing Per-Survivor Processing with Channel Pre-diction[J]. Journal of Signal Processing, 2019, 23(3): 115-126.
[10]JUN Y, TONG J. 相位均衡器技术在水声接收机的应用[J]. 声学技术, 2019, 38(3): 6.
[11]STOJANOVIC M. Underwater acoustic communications[C/OL]//Proceedings of Electro/Inter-national 1995. 1995: 435-440. DOI: 10.1109/ELECTR.1995.471021.
[12]张国恒. OFDM 水声通信系统中同步技术研究[D]. 哈尔滨工程大学, 2008.
[13]朱彤, 桑恩方. 基于正交频分复用的高速水声通信技术[J]. 哈尔滨工程大学学报, 2005, 26(1): 4.
[14]STOJANOVIC M, CATIPOVIC J A. Phase-coherent digital communications for underwater acoustic channels[J]. Oceanic Engineering IEEE Journal of, 1994, 19(1): 100-111.
[15]SHARIF B, NEASHAM J, THOMPSON D, et al. A blind multichannel combiner for long range underwater communications[C]//IEEE International Conference on Acoustics. 1997.
[16]TSIMENIDIS C C, HINTON O R, ADAMS A E, et al. Underwater acoustic receiver employing direct-sequence spread spectrum and spatial diversity combining for shallow-water multiaccess networking[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 594-603.
[17]BEAUJEAN P, BERNAULT E P. A new multi-channel spatial diversity technique for long range acoustic communications in shallow water[C]//Oceans. 2003.
[18]KANG T, SONG H C, HODGKISS W S, et al. Long-range multi-carrier acoustic communica-tions in shallow water based on iterative sparse channel estimation[J]. Journal of the Acoustical Society of America, 2010, 128(6): EL372.
[19]SONG H C, CHO S, KANG T, et al. Long-range acoustic communication in deep water using a towed array[J]. The Journal of the Acoustical Society of America, 2011, 129(3): EL71-5.61
[20]ZHANG G, DONG H. Experimental demonstration of spread spectrum communication over long range multipath channels[J]. Applied Acoustics, 2012, 73(9): 872-876.
[21]FREITAG L, BALL K, PARTAN J, et al. Long range acoustic communications and navigation in the Arctic[C]//Oceans. 2016.
[22]KIM H, KIM S, CHOI J W, et al. Bidirectional equalization based on error propagation detection in long-range underwater acoustic communication[J]. Japanese Journal of Applied Physics,2019, 58(SG): SGGF01.
[23]ZHU W Q, WANG C H, FENG P, et al. Underwater acoustic communication system of AUV[C]//Oceans. 1998.
[24]何成兵, 黄建国, 张群飞, 等. M 元线性调频远程水声通信新技术[J]. 西北工业大学学报, 2005, 23(6): 4.
[25]吴芳菲, 黄建国, 何成兵. 远程高速水声通信及实验研究[J]. 计算机测量与控制, 2010(8):3.
[26]申晓红, 黄建国, 张歆, 等. 远程水声通信 MC-MPSK 及均衡方法[J]. 西北工业大学学报, 2005(06): 91-95.
[27]朱维庆, 朱敏, 武岩波, 等. 载人潜水器” 蛟龙” 号的水声通信信号处理[J]. 声学学报, 2012, 37(6): 9.
[28]YAN-BO, WU, MIN, et al. Shipborne Underwater Acoustic Communication System and Sea Trials with Submersible Shenhai Yongshi[J]. China Ocean Engineering, 2018.
[29]GALLAGER R G. Information theory and reliable communication /[M]. Information Theory and Reliable Communication, 1972.
[30]HAYES J F. Adaptive Feedback Communications[J]. IEEE Transactions on Communication Technology, 1968, 16(1): 29-34.
[31]BINGHAM J. Multicarrier Modulation for Data Transmission: An Idea Whose TimeHas Come[J]. IEEE Communications Magazine, 1990, 28(5): 5-14.
[32]AYELA G, NICOT M, LURTON X. New innovative multimodulation acoustic communication system[C]//Oceans. 1994.
[33]NASRI N, HNIA H B, KACHOURI A, et al.Modulation/demodulation techniques with FPGA’s architecture to improve OFDM wireless underwater communication transceiver[C]// International Conference on Design & Test of Integrated Systems in Nanoscale Technology.2006.
[34]LI B, ZHOU S, STOJANOVIC M, et al. MIMO-OFDM Over An Underwater AcousticChannel [C]//OCEANS 2007. 2007.
[35]AHMED S, ARSLAN H. Evaluation and compensation of frequency dependent path loss over OFDM subcarriers in UAC[J]. IEEE, 2009.
[36]LI B, JIE H, ZHOU S, et al. MIMO-OFDM for High-Rate Underwater Acoustic Communica-tions[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 634-644.
[37]BEHESHTI M, OMIDI…M J. Time-Domain Block and Per-Tone Equalization for MIMO–OFDM in Shallow Underwater Acoustic Communication[J]. Wireless Personal Communica-tions, 2013, 71(2): 1193-1215.62
[38]TAO J. Turbo equalization for MIMO SC-FDMA underwater acoustic communications[C]//Oceans. 2016.
[39]ZHANG Y, ZAKHAROV Y, LI J. Soft-Decision-Driven Sparse Channel Estimation and Turbo Equalization for MIMO Underwater Acoustic Communications[J]. IEEE Access, 2018: 1-1.
[40]申晓红, 黄建国, 张群飞, 等. 自适应多制式正交多载波高速水声通信技术研究[J]. 西北工业大学学报, 2007, 25(1): 6.
[41]王巍, 乔钢, 王玥, 等. 多输入多输出正交频分复用浅海水声通信打孔判决反馈信道估计算法[J]. 兵工学报, 2013, 34(9): 1116-1124.
[42]景连友, 何成兵, 张玲玲, 等. 水声通信中基于软判决的块迭代判决反馈均衡器[J]. 电子与信息学报, 2016, 38(4): 7.
[43]熊杨琪. 基于水声通信 OFDM 系统峰均比抑制方法及其性能研究[D]. 华中科技大学.
[44]江涛. OFDM 无线通信系统中峰均功率比的研究[D]. 华中科技大学.
[45]DIXIT A, PARASHAR P, CHANGLANI S. Partial Transmit Sequence Scheme for PAPR Re-duction in OFDM Systems: A Review[Z]. 2015.
[46]宋章启. Sagnac 光纤水听器阵列关键技术研究[D]. 国防科学技术大学, 2007.
[47]阎良俊. 基于光纤水听器的水声通信关键技术研究[D]. 南方科技大学.

所在学位评定分委会
创新创业学院
国内图书分类号
V276
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343176
专题创新创业学院
推荐引用方式
GB/T 7714
黄可钦. 基于光纤水听器的OFDM水声通信研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032559-黄可钦-创新创业学院.(21505KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄可钦]的文章
百度学术
百度学术中相似的文章
[黄可钦]的文章
必应学术
必应学术中相似的文章
[黄可钦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。