[1] Brian Alspach. Graph Symmetry: Algebraic Methods and Applications[M]. Springer Netherlands,1997.
[2] Brian Alspach and Lewis A. Nowitz. Elementary proofs that 𝑍^2_𝑝 and 𝑍^3_𝑝are CI-groups[J]. Eur. J. Comb., 20:607–617, 1999.
[3] László Babai. Isomorphism problem for a class of point-symmetric structures[J/OL]. Acta Math. Acad. Sci. Hungar., 29(3-4):329–336, 1977.
[4] László Babai. Automorphism groups, isomorphism, reconstruction[M]. In Handbook of combinatorics, Vol. 1, 2, pages 1447–1540. Elsevier Sci. B. V., Amsterdam, 1995.
[5] László Babai and Peter Frankl. Isomorphisms of Cayley graphs. I[C]. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq. Math. Soc. János Bolyai, pages 35–52. North-Holland, Amsterdam-New York, 1978.
[6] László Babai and Peter Frankl. Isomorphisms of Cayley graphs. II[J/OL]. Acta Math. Acad. Sci. Hungar., 34(1-2):177–183, 1979.
[7] Gregory L. Cherlin and Ulrich Felgner. Homogeneous solvable groups[J/OL]. J. London Math. Soc.(2), 44(1):102–120, 1991.
[8] Leonard Eugene Dickson. Linear groups: With an exposition of the Galois field theory[M]. Dover Publications, Inc., New York, 1958.
[9] Edward Dobson. Isomorphism problem for Cayley graphs of 𝑍^3_𝑝 [J]. Discrete Math., 147(1-3):87–94, 1995.
[10] Edward Dobson and Pablo Spiga. CI-groups with respect to ternary relational structures: new examples[J/OL]. Ars Math. Contemp., 6(2):351–364, 2013.
[11] Bernard Elspas and James Turner. Graphs with circulant adjacency matrices[J]. J. Combinatorial Theory, 9:297–307, 1970.
[12] Yan Quan Feng and István KovÁcs. Elementary abelian groups of rank 5 are DCI-groups[J/OL]. J. Combin. Theory Ser. A, 157, 05 2017.
[13] Chris Godsil. On the full automorphism group of a graph[J/OL]. Combinatorica, 1(3):243–256,1981.
[14] Chris Godsil. On Cayley graph isomorphisms[J]. Ars Combin., 15:231–246, 1983.
[15] Chris Godsil and Gordon F. Royle. Algebraic Graph Theor[M]. Number Book 207 in Graduate Texts in Mathematics. Springer, 2001.
[16] Fletcher Gross. Conjugacy of odd order Hall subgroups[J/OL]. Bull. London Math. Soc., 19(4):311–319, 1987.
[17] Zheng Yu Gu and Cai Heng Li. A nonabelian CI-group[J/OL]. Australas. J. Combin., 17:229–233, 1998.
[18] Robert M. Guralnick. Subgroups of prime power index in a simple group[J/OL]. J. Algebra, 81(2):304–311, 1983.
[19] Geňa Hahn and Claude Tardif. Graph homomorphisms: structure and symmetry[M]. In Graph symmetry (Montreal, PQ, 1996), volume 497 of NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., pages 107–166. Kluwer Acad. Publ., Dordrecht, 1997.
[20] Mitsugu Hirasaka and Mikhail Muzychuk. An elementary abelian group of rank 4 is a CIgroup[J/OL]. J. Combin. Theory Ser. A, 94:339–362, 05 2001.
[21] István Kovács and Mikhail Muzychuk. The group 𝑍^2_p×𝑍_𝑞 is a CI-group[J/OL]. Comm. Algebra, 37(10):3500–3515, 2009.
[22] István Kovács and Grigory Ryabov. The group 𝐶^4_𝑝 × 𝐶_𝑞 is a DCI-group[J]. Discrete Math., 345:112705, 03 2022.
[23] Cai Heng Li. On isomorphisms of connected Cayley graphs. II[J/OL]. J. Combin. Theory Ser. B, 74(1):28–34, 1998.
[24] Cai Heng Li. Finite CI-groups are soluble[J/OL]. Bull. London Math. Soc., 31(4):419–423, 1999.
[25] Cai Heng Li. Isomorphisms of finite Cayley digraphs of bounded valency. II[J/OL]. J. Combin. Theory Ser. A, 87(2):333–346, 1999.
[26] Cai Heng Li. On isomorphisms of finite Cayley graphs—a survey[J/OL]. Discrete Math., 256(1):301–334, 2002.
[27] Cai Heng Li, Zai Ping Lu, and P. P. Pálfy. Further restrictions on the structure of finite CIgroups[J/OL]. J. Algebraic Combin., 26(2):161–181, 2007.
[28] Cai Heng Li and Cheryl E. Praeger. The finite simple groups with at most two fusion classes of every order[J/OL]. Comm. Algebra, 24(11):3681–3704, 1996.
[29] Cai Heng Li and Cheryl E. Praeger. Finite groups in which any two elements of the same order are either fused or inverse-fused[J/OL]. Comm. Algebra, 25(10):3081–3118, 1997.
[30] Cai Heng Li and Cheryl E. Praeger. On the isomorphism problem for finite Cayley graphs of bounded valency[J/OL]. European J. Combin., 20(4):279–292, 1999.
[31] Cai Heng Li, Cheryl E. Praeger, and Ming Yao Xu. Isomorphisms of finite Cayley digraphs of bounded valency[J/OL]. J. Combin. Theory Ser. B, 73(2):164–183, 1998.
[32] Joy Morris. Elementary proof that 𝑍^4_𝑝 is a DCI-group[J]. Discrete Math., 338, 2015.
[33] Mikhail E. Muzychuk. Adám’s conjecture is true in the square-free case[J]. J. Comb. Theory, Ser. A, 72:118–134, 1995.
[34] Mikhail E. Muzychuk. On Adám’s conjecture for circulant graphs[J]. Discrete Math., 167-168:497–510, 1997.
[35] Mikhail E. Muzychuk. An elementary abelian group of large rank is not a CI-group[M/OL]. volume 264, pages 167–185. 2003.
[36] Lewis A. Nowitz. A non-Cayley-invariant Cayley graph of the elementary abelian group of order 64[J]. Discrete Math., 110(1-3):223–228, 1992.
[37] Cheryl E. Praeger. Imprimitive symmetric graphs[J/OL]. Ars Combin., 19(A):149–163, 1985.
[38] Cheryl E. Praeger and Csaba Schneider. Permutation groups and Cartesian decompositions[M]. Number Book 449 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2018.
[39] Joseph J. Rotman. An introduction to the theory of groups[M]. Number Book 148 in Graduate Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995.
[40] Grigory Ryabov. The Cayley isomorphism property for the group 𝐶^5_2 × 𝐶_𝑝[J/OL]. Ars Math. Contemp., 19(2):277–295, 2020.
[41] Grigory Ryabov. The Cayley isomorphism property for the group 𝐶_4 × 𝐶^2_𝑝 [J/OL]. Comm. Algebra, 49(4):1788–1804, 2021.
[42] Gábor Somlai. The Cayley isomorphism property for groups of order 8𝑝[J/OL]. Ars Math. Contemp., 8(2):433–444, 2015.
[43] Gábor Somlai and Mikhail Muzychuk. The Cayley isomorphism property for 𝑍^3_𝑝× 𝑍_𝑞[J/OL]. Algebr. Comb., 4(2):289–299, 2021.
[44] Michio Suzuki. Group theory. I[M]. Iwanami Shoten, Tokyo, 1977.
[45] Michio Suzuki. Group theory. II[M]. Springer-Verlag, New York, 1986.
[46] Shunichi Toida. A note on Adám’s conjecture[J/OL]. J. Combin Theory Ser. B, 23(2-3):239–246, 1977.
[47] Ming Yao Xu. On isomorphisms of Cayley digraphs and graphs of groups of order 𝑝3[J]. Advances Math (China), 17:427–428, 1988.
[48] Ji Ping Zhang. On finite groups all of whose elements of the same order are conjugate in their automorphism groups[J/OL]. J. Algebra, 153(1):22–36, 1992.
[49] 徐明曜. 有限群初步[M]. 现代数学基础丛书152. 科学出版社第一版, 2019.
修改评论