中文版 | English
题名

PARP/HDAC双靶点抑制剂对胰腺癌抗肿瘤活性研究

其他题名
ANTITUMOR ACTIVITY OF DUAL PARP/HDAC INHIBITOR IN PANCREATIC CANCER
姓名
姓名拼音
LIU Jiaqi
学号
12032113
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
田瑞军
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  胰腺癌恶性程度高且易转移和复发,目前尚无有效药物进行治疗。PARPHDAC在肿瘤的发生发展中发挥着重要作用。PARP识别并修复肿瘤细胞中损伤的DNA,使细胞及时修复损伤得以存活。HDAC在多种肿瘤细胞中过表达,降低组蛋白的乙酰化水平,促进原癌基因的转录,有利于癌细胞分裂增殖。目前已上市了多种靶向PARPHDAC的抑制剂,在多种癌症中表现出良好的临床治疗效果。有研究也表明联合使用PARPHDAC单靶点抑制剂具有协同抗肿瘤反应。同时靶向PARPHDAC还会影响肿瘤的免疫微环境,调节肿瘤的免疫原性和免疫细胞的分布,并影响肿瘤的免疫治疗。然而目前尚无PARPHDAC双靶点抑制剂应用于胰腺癌研究,也未见其调控胰腺癌肿瘤免疫微环境的报道。

  本研究结果表明PARPHDAC在胰腺癌中呈正相关,且同时靶向抑制PARPHDAC能够协同抑制胰腺癌细胞的增殖能力。在课题组合成的一系列PARP/HDAC双靶点抑制剂中,化合物P2对胰腺癌细胞的抑制效果较好,且对MIA PaCa-2KP4细胞系更为敏感。在形态学上,P2能够减弱MIA PaCa-2KP4的增殖、迁移和侵袭能力;诱导胰腺癌细胞的凋亡,并通过上调P21的表达使胰腺癌阻滞于S/G2期。机制上,P2可同时靶向PARPHDAC,通过诱导DNA双链损伤和恢复组蛋白的乙酰化水平发挥其抗肿瘤效应;P2能够降低同源重组修复蛋白BRCA1RAD51的表达,发挥PARP抑制剂的“合成致死效应”;P2激活cGAS-STING先天免疫通路,促进干扰素、干扰素刺激基因及趋化因子的表达,调控肿瘤免疫微环境;此外,P2会显著增加PD-L1的表达,提示P2PD-L1阻断药物联用可增强抗肿瘤效应。

  本研究探索了抑制PARPHDAC抗肿瘤活性的分子机制,并为PARP/HDAC抑制剂与免疫疗法联合治疗胰腺癌奠定了基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. Ca-a Cancer Journal for Clinicians, 2022, 72(1): 7-33.
[2] HUI L L, CHEN Y. Tumor microenvironment: Sanctuary of the devil[J]. Cancer Letters, 2015, 368(1): 7-13.
[3] ADAMSKA A, DOMENICHINI A, FALASCA M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies[J]. International Journal of Molecular Sciences, 2017, 18(7): 1338-1338.
[4] LUO G P, JIN K Z, DENG S M, et al. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter[J]. Biochimica Et Biophysica Acta-Reviews on Cancer, 2021, 1875(2): 188409-188409.
[5] 中华医学会外科学分会胰腺外科学组, 中国研究型医院学会胰腺疾病专业委员会. 中国胰腺癌新辅助治疗指南(2020版)[J]. 中华外科杂志, 2020, 58(09): E001-E001.
[6] 中华医学会外科学分会胰腺外科学组. 中国胰腺癌诊治指南(2021)[J]. 中华消化外科杂志, 2021, 20(07): 713-729.
[7] REN B, CUI M, YANG G, et al. Tumor microenvironment participates in metastasis of pancreatic cancer[J]. Molecular Cancer, 2018, 17(1): 108.
[8] ZHAO Z Y, LIU W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment[J]. Technology in Cancer Research & Treatment, 2020, 19: 4846-4861.
[9] LORD C J, ASHWORTH A. PARP inhibitors: Synthetic lethality in the clinic[J]. Science, 2017, 355(6330): 1152-1158.
[10] GUPTE R, LIU Z Y, KRAUS W L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes[J]. Genes & Development, 2017, 31(2): 101-126.
[11] HER J, BUNTING S F. How cells ensure correct repair of DNA double-strand breaks[J]. Journal of Biological Chemistry, 2018, 293(27): 10502-10511.
[12] PETRUCELLI N, DALY M B, FELDMAN G L. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2[J]. Genetics in Medicine, 2010, 12(5): 245-259.
[13] ZHANG W H, VAN GENT D C, INCROCCI L, et al. Role of the DNA damage response in prostate cancer formation, progression and treatment[J]. Prostate Cancer and Prostatic Diseases, 2020, 23(1): 24-37.
[14] GHOSE A, MOSCHETTA M, PAPPAS-GOGOS G, et al. Genetic Aberrations of DNA Repair Pathways in Prostate Cancer: Translation to the Clinic[J]. International Journal of Molecular Sciences, 2021, 22(18): 9783-9783.
[15] SHAH S D, RACHMAT R, ENYIOMA S, et al. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations[J]. International Journal of Molecular Sciences, 2021, 22(23): 12628-12628.
[16] HADDAD G, SAADE M C, EID R, et al. PARP inhibitors: a tsunami of indications in different malignancies[J]. Pharmacogenomics, 2020, 21(3): 221-230.
[17] ROGAKOU E P, PILCH D R, ORR A H, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. Journal of Biological Chemistry, 1998, 273(10): 5858-5868.
[18] ROSEN M N, GOODWIN R A, VICKERS M M. BRCA mutated pancreatic cancer: A change is coming[J]. World Journal of Gastroenterology, 2021, 27(17): 1943-1958.
[19] LIU C Y, SUN H J, LU J, et al. Histone acetylation and cancer[J]. Progress in Biochemistry and Biophysics, 2003, 30(1): 19-23.
[20] VERZA F A, DAS U, FACHIN A L, et al. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy[J]. Cancers, 2020, 12(6): 1664.
[21] MARKS P A, RIFKIND R A, RICHON V M, et al. Histone deacetylases and cancer: Causes and therapies[J]. Nature Reviews Cancer, 2001, 1(3): 194-202.
[22] GIL J, RAMIREZ-TORRES A, ENCARNACION-GUEVARA S. Lysine acetylation and cancer: A proteomics perspective[J]. Journal of Proteomics, 2017, 150: 297-309.
[23] SINGH B N, ZHANG G H, HWA Y L, et al. Nonhistone protein acetylation as cancer therapy targets[J]. Expert Review of Anticancer Therapy, 2010, 10(6): 935-954.
[24] MOTTAMAL M, ZHENG S L, HUANG T L, et al. Histone Deacetylase Inhibitors in Clinical Studies as Templates for New Anticancer Agents[J]. Molecules, 2015, 20(3): 3898-3941.
[25] JONES P A, ISSA J P J, BAYLIN S. Targeting the cancer epigenome for therapy[J]. Nature Reviews Genetics, 2016, 17(10): 630-641.
[26] WAWRUSZAK A, BORKIEWICZ L, OKON E, et al. Vorinostat (SAHA) and Breast Cancer: An Overview[J]. Cancers, 2021, 13(18): 4700-4700.
[27] KOMATSU N, KAWAMATA N, TAKEUCHI S, et al. SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells[J]. Oncology Reports, 2006, 15(1): 187-191.
[28] SEAH S, LOH J Y, NGUYENA T T T, et al. SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling[J]. Experimental Cell Research, 2018, 370(2): 283-291.
[29] GALANIS E, JAECKLE K A, MAURER M J, et al. Phase II Trial of Vorinostat in Recurrent Glioblastoma Multiforme: A North Central Cancer Treatment Group Study[J]. Journal of Clinical Oncology, 2009, 27(12): 2052-2058.
[30] FENG W, ZHANG B, CAI D W, et al. Therapeutic potential of histone deacetylase inhibitors in pancreatic cancer[J]. Cancer Letters, 2014, 347(2): 183-190.
[31] KONSTANTINOPOULOS P A, WILSON A J, SASKOWSKI J, et al. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer[J]. Gynecologic Oncology, 2014, 133(3): 599-606.
[32] MIN A, IM S A, KIM D K, et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells[J]. Breast Cancer Research, 2015, 17(1): 33.
[33] LIANG B Y, XIONG M, JI G B, et al. Synergistic suppressive effect of PARP-1 inhibitor PJ34 and HDAC inhibitor SAHA on proliferation of liver cancer cells[J]. Journal of Huazhong University of Science and Technology-Medical Sciences, 2015, 35(4): 535-540.
[34] LUONG Q T, O'KELLY J, BRAUNSTEIN G D, et al. Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo[J]. Clinical Cancer Research, 2006, 12(18): 5570-5577.
[35] LAVARONE E, PUPPIN C, PASSON N, et al. The PARP inhibitor PJ34 modifies proliferation, NIS expression and epigenetic marks in thyroid cancer cell lines[J]. Molecular and Cellular Endocrinology, 2013, 365(1): 1-10.
[36] BALDAN F, MIO C, ALLEGRI L, et al. Synergy between HDAC and PARP Inhibitors on Proliferation of a Human Anaplastic Thyroid Cancer-Derived Cell Line[J]. International Journal of Endocrinology, 2015, 2015: 978371.
[37] RASMUSSEN R D, GAJJAR M K, JENSEN K E, et al. Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma[J]. Molecular Oncology, 2016, 10(5): 751-763.
[38] ZHANG H X, LIU H L, CHEN Y L, et al. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice[J]. Nature Communications, 2016, 7(1): 10201.
[39] YIN L L, LIU Y H, PENG Y C, et al. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells[J]. Journal of Experimental & Clinical Cancer Research, 2018, 37(1): 1-14.
[40] MA L Y, BIAN X, LIN W C. The dual HDAC-PI3K inhibitor CUDC-907 displays single-agent activity and synergizes with PARP inhibitor olaparib in small cell lung cancer[J]. Journal of Experimental & Clinical Cancer Research, 2020, 39(1): 219-219.
[41] LU H Y, BAI L, ZHOU Y P, et al. Recent Study Dual HDAC/PARP Inhibitor for the Treatment of Tumor[J]. Current Topics in Medicinal Chemistry, 2019, 19(12): 1041-1050.
[42] TOOR S M, NAIR V S, DECOCK J, et al. Immune checkpoints in the tumor microenvironment[J]. Seminars in Cancer Biology, 2020, 65: 1-12.
[43] GOZGIT J M, VASBINDER M M, ABO R P, et al. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity[J]. Cancer Cell, 2021, 39(9): 1214-1226.
[44] DING L Y, KIM H J, WANG Q W, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer[J]. Cell Reports, 2018, 25(11): 2972-2980.
[45] SEN T, RODRIGUEZ B L, CHEN L M, et al. Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer[J]. Cancer Discovery, 2019, 9(5): 646-661.
[46] PANTELIDOU C, SONZOGNI O, TAVEIRA M D, et al. PARP Inhibitor Efficacy Depends on CD8(+) T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer[J]. Cancer Discovery, 2019, 9(6): 722-737.
[47] WOODS D M, SODRE A L, VILLAGRA A, et al. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade[J]. Cancer Immunology Research, 2015, 3(12): 1375-1385.
[48] ZHENG H, ZHAO W P, YAN C H, et al. HDAC Inhibitors Enhance T-Cell Chemokine Expression and Augment Response to PD-1 Immunotherapy in Lung Adenocarcinoma[J]. Clinical Cancer Research, 2016, 22(16): 4119-4132.
[49] CAI X, CHIU Y H, CHEN Z J J. The cGAS-cGAMP-STING Pathway of Cytosolic DNA Sensing and Signaling[J]. Molecular Cell, 2014, 54(2): 289-296.
[50] CHEN Q, SUN L J, CHEN Z J J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing[J]. Nature Immunology, 2016, 17(10): 1142-1149.
[51] WEST A P, KHOURY-HANOLD W, STARON M, et al. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015, 520(7548): 553-557.
[52] CORRALES L, GAJEWSKI T F. Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy[J]. Cytokine, 2016, 77: 245-247.
[53] YUAN Z G, CHEN S P, SUN Q S, et al. Olaparib hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy[J]. Bioorganic & Medicinal Chemistry, 2017, 25(15): 4100-4109.
[54] TIFFON C. Histone Deacetylase Inhibition Restores Expression of Hypoxia-Inducible Protein NDRG1 in Pancreatic Cancer[J]. Pancreas, 2018, 47(2): 200-207.
[55] DONG Z X, YANG Y, LIU S X, et al. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer[J]. Oncotarget, 2018, 9(1): 512-523.
[56] JANYST K, JANYST M, SIERNICKA M, et al. Synergistic antitumor effects of histone deacetylase inhibitor scriptaid and bortezomib against ovarian cancer cells[J]. Oncology Reports, 2018, 39(4): 1999-2005.
[57] HUAN S W, GUI T, XU Q T, et al. Combination BET Family Protein and HDAC Inhibition Synergistically Elicits Chondrosarcoma Cell Apoptosis Through RAD51-Related DNA Damage Repair[J]. Cancer Management and Research, 2020, 12: 4429-4439.
[58] HA K, FISKUS W, CHOI D S, et al. Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells[J]. Oncotarget, 2014, 5(14): 5637-5650.

所在学位评定分委会
化学系
国内图书分类号
R96
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343179
专题理学院_化学系
推荐引用方式
GB/T 7714
刘家淇. PARP/HDAC双靶点抑制剂对胰腺癌抗肿瘤活性研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032113-刘家淇-化学系.pdf(3850KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘家淇]的文章
百度学术
百度学术中相似的文章
[刘家淇]的文章
必应学术
必应学术中相似的文章
[刘家淇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。