题名 | Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model |
作者 | |
通讯作者 | Zhao,Yaomin |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 34期号:6 |
摘要 | We apply a machine-learned subgrid-scale model to large-eddy simulations (LES) of heavy particles in isotropic turbulence with different Stokes numbers. The data-driven model, originally developed for high Reynolds number isotropic turbulent flows based on the gene expression programming (GEP) method, has explicit model equations and is for the first time tested in multiphase problems. The performance of the GEP model has been investigated in detail, focusing on the particle statistics including particle acceleration, velocity, and clustering. Compared with the commonly used dynamic Smagorinsky model, the GEP model provides significantly improved predictions on the particle statistics with Stokes numbers varying from 0.01 to 20, showing satisfactory agreement with the results from direct numerical simulations. The reasons for the enhanced predictions of the GEP model are further discussed. As the GEP model is less dissipative and it introduces high-order terms closely related to vorticity distribution, the fine-scale structures usually missing in LES simulations can be better recovered, which are believed to be closely related to the intermittency of particle motion and also particle clustering. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[11988102,92152102,91752202]
; Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)[2022QNLM010201]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000811856100009
|
出版者 | |
EI入藏号 | 20222512257061
|
EI主题词 | Gene expression
; Reynolds number
; Turbulence
|
EI分类号 | Biology:461.9
; Fluid Flow:631
; Fluid Flow, General:631.1
; Mathematics:921
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85132256375
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/343325 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing,100871,China 2.HEDPS,Center for Applied Physics and Technology,College of Engineering,Peking University,Beijing,100871,China 3.Joint Laboratory of Marine Hydrodynamics and Ocean Engineering,Pilot National Laboratory for Marine Science and Technology,Shandong,Qingdao,266237,China 4.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Wu,Qi,Zhao,Yaomin,Shi,Yipeng,et al. Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model[J]. PHYSICS OF FLUIDS,2022,34(6).
|
APA |
Wu,Qi,Zhao,Yaomin,Shi,Yipeng,&Chen,Shiyi.(2022).Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model.PHYSICS OF FLUIDS,34(6).
|
MLA |
Wu,Qi,et al."Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model".PHYSICS OF FLUIDS 34.6(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论