中文版 | English
题名

Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model

作者
通讯作者Zhao,Yaomin
发表日期
2022-06-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号34期号:6
摘要
We apply a machine-learned subgrid-scale model to large-eddy simulations (LES) of heavy particles in isotropic turbulence with different Stokes numbers. The data-driven model, originally developed for high Reynolds number isotropic turbulent flows based on the gene expression programming (GEP) method, has explicit model equations and is for the first time tested in multiphase problems. The performance of the GEP model has been investigated in detail, focusing on the particle statistics including particle acceleration, velocity, and clustering. Compared with the commonly used dynamic Smagorinsky model, the GEP model provides significantly improved predictions on the particle statistics with Stokes numbers varying from 0.01 to 20, showing satisfactory agreement with the results from direct numerical simulations. The reasons for the enhanced predictions of the GEP model are further discussed. As the GEP model is less dissipative and it introduces high-order terms closely related to vorticity distribution, the fine-scale structures usually missing in LES simulations can be better recovered, which are believed to be closely related to the intermittency of particle motion and also particle clustering.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[11988102,92152102,91752202] ; Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)[2022QNLM010201]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000811856100009
出版者
EI入藏号
20222512257061
EI主题词
Gene expression ; Reynolds number ; Turbulence
EI分类号
Biology:461.9 ; Fluid Flow:631 ; Fluid Flow, General:631.1 ; Mathematics:921
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85132256375
来源库
Scopus
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343325
专题工学院_力学与航空航天工程系
作者单位
1.State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing,100871,China
2.HEDPS,Center for Applied Physics and Technology,College of Engineering,Peking University,Beijing,100871,China
3.Joint Laboratory of Marine Hydrodynamics and Ocean Engineering,Pilot National Laboratory for Marine Science and Technology,Shandong,Qingdao,266237,China
4.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Wu,Qi,Zhao,Yaomin,Shi,Yipeng,et al. Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model[J]. PHYSICS OF FLUIDS,2022,34(6).
APA
Wu,Qi,Zhao,Yaomin,Shi,Yipeng,&Chen,Shiyi.(2022).Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model.PHYSICS OF FLUIDS,34(6).
MLA
Wu,Qi,et al."Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model".PHYSICS OF FLUIDS 34.6(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Qi]的文章
[Zhao,Yaomin]的文章
[Shi,Yipeng]的文章
百度学术
百度学术中相似的文章
[Wu,Qi]的文章
[Zhao,Yaomin]的文章
[Shi,Yipeng]的文章
必应学术
必应学术中相似的文章
[Wu,Qi]的文章
[Zhao,Yaomin]的文章
[Shi,Yipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。