[1] 新华社. 世界首颗量子科学实验卫星“墨子号”正式交付使用 2017 年 01 月 18 日[EB/OL].(2017-1-18)
[2017-1-18]. http://www.xinhuanet.com//photo/2017-01/18/c_1120339681.htm.
[2] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor [J]. Nature, 2019, 574(7779): 505-510.
[3] 习近平. 习近平: 加强量子科技发展战略谋划和系统布局[N]. 人民日报海外版, 2020-10-19((1)).
[4] FEYNMAN. Simulating physics with computers [J]. International Journal Of Theoretical Physics, 1982, 21(6/7): 467–488.
[5] MANIN Y. Computable and Uncomputable [M]. Moscow: Sovetskoye Radio, 1980: 128.
[6] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum com puter [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, 400(1818): 97-117.
[7] BERNSTEIN E, VAZIRANI U. Quantum complexity theory [J]. SIAM Journal on computing, 1997, 26(5): 1411-1473.
[8] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM review, 1999, 41(2): 303-332.
[9] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Physical Review Letters, 1997, 79(2): 325.
[10] PRESKILL J. Quantum computing in the NISQ era and beyond [J]. Quantum, 2018, 2: 79.
[11] GOTTESMAN D. An introduction to quantum error correction and fault-tolerant quantum com putation [C]//Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics: volume 68. 2010: 13-58.
[12] CAMPBELL E T, TERHAL B M, VUILLOT C. Roads towards fault-tolerant universal quan tum computation [J]. Nature, 2017, 549(7671): 172-179.
[13] DIVINCENZO D P. The physical implementation of quantum computation [J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[14] 鲁大为. 利用核磁共振量子计算实验实现量子模拟[D]. 中国科学技术大学, 2012.
[15] 辛涛. 量子态重构与动力学时间关联的核磁共振实验研究[D]. 清华大学, 2017.
[16] LEVITT M H. Spin dynamics: basics of nuclear magnetic resonance [M]. John Wiley & Sons, 2013: 178.
[17] LLOYD S. Universal quantum simulators [J]. Science, 1996, 273(5278): 1073-1078.
[18] WALLMAN J, FLAMMIA S, HINCKS I. Quantum Characterization, Verification, and Valida tion [M]//Oxford Research Encyclopedia of Physics. 2018.
[19] EISERT J, HANGLEITER D, WALK N, et al. Quantum certification and benchmarking [J]. Nature Reviews Physics, 2020, 2(7): 382-390.
[20] HRADIL Z. Quantum-state estimation [J]. Physical Review A, 1997, 55(3): R1561.
[21] JAMES D F, KWIAT P G, MUNRO W J, et al. On the measurement of qubits [M]//Asymptotic Theory of Quantum Statistical Inference: Selected Papers. World Scientific, 2005: 509-538.
[22] HÄFFNER H, HÄNSEL W, ROOS C, et al. Scalable multiparticle entanglement of trapped ions [J]. Nature, 2005, 438(7068): 643-646.
[23] SONG C, XU K, LIU W, et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit [J]. Physical Review Letters, 2017, 119(18): 180511.
[24] GROSS D, LIU Y K, FLAMMIA S T, et al. Quantum state tomography via compressed sensing [J]. Physical Review Letters, 2010, 105(15): 150401.
[25] KALEV A, KOSUT R L, DEUTSCH I H. Quantum tomography protocols with positivity are compressed sensing protocols [J]. Npj Quantum Information, 2015, 1(1): 1-6.
[26] GUŢĂ M, KAHN J, KUENG R, et al. Fast state tomography with optimal error bounds [J]. Journal of Physics A: Mathematical and Theoretical, 2020, 53(20): 204001.
[27] TORLAI G, MAZZOLA G, CARRASQUILLA J, et al. Neural-network quantum state tomography [J]. Nature Physics, 2018, 14(5): 447-450.
[28] CARRASQUILLA J, TORLAI G, MELKO R G, et al. Reconstructing quantum states with generative models [J]. Nature Machine Intelligence, 2019, 1(3): 155-161.
[29] WEINSTEIN Y S, HAVEL T F, EMERSON J, et al. Quantum process tomography of the quantum Fourier transform [J]. The Journal of chemical physics, 2004, 121(13): 6117-6133.
[30] EMERSON J, SILVA M, MOUSSA O, et al. Symmetrized characterization of noisy quantum processes [J]. Science, 2007, 317(5846): 1893-1896.
[31] LU D, LI H, TROTTIER D A, et al. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor [J]. Physical Review Letters, 2015, 114(14): 140505.
[32] FLAMMIA S T, GROSS D, LIU Y K, et al. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators [J]. New Journal of Physics, 2012, 14 (9): 095022.
[33] KLIESCH M, KUENG R, EISERT J, et al. Guaranteed recovery of quantum processes from few measurements [J]. Quantum, 2019, 3: 171.
[34] CRAMER M, PLENIO M B, FLAMMIA S T, et al. Efficient quantum state tomography [J]. Nature communications, 2010, 1(1): 1-7.
[35] HÜBENER R, MARI A, EISERT J. Wick’s theorem for matrix product states [J]. Physical Review Letters, 2013, 110(4): 040401.
[36] BAUMGRATZ T, GROSS D, CRAMER M, et al. Scalable reconstruction of density matrices [J]. Physical Review Letters, 2013, 111(2): 020401.
[37] KNILL E, LEIBFRIED D, REICHLE R, et al. Randomized benchmarking of quantum gates [J]. Physical Review A, 2008, 77(1): 012307.
[38] MAGESAN E, GAMBETTA J M, JOHNSON B R, et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking [J]. Physical Review Letters, 2012, 109 (8): 080505.
[39] MCKAY D C, SHELDON S, SMOLIN J A, et al. Three-qubit randomized benchmarking [J]. Physical Review Letters, 2019, 122(20): 200502.
[40] HOLZÄPFEL M, BAUMGRATZ T, CRAMER M, et al. Scalable reconstruction of unitary processes and Hamiltonians [J]. Physical Review A, 2015, 91(4): 042129.
[41] COLE J H, SCHIRMER S G, GREENTREE A D, et al. Identifying an experimental two-state Hamiltonian to arbitrary accuracy [J]. Physical Review A, 2005, 71(6): 062312.
[42] DEVITT S J, COLE J H, HOLLENBERG L C. Scheme for direct measurement of a general two-qubit Hamiltonian [J]. Physical Review A, 2006, 73(5): 052317.
[43] DI FRANCO C, PATERNOSTRO M, KIM M. Hamiltonian tomography in an access-limited setting without state initialization [J]. Physical Review Letters, 2009, 102(18): 187203.
[44] ZHANG J, SAROVAR M. Identification of open quantum systems from observable time traces [J]. Physical Review A, 2015, 91(5): 052121.
[45] HOU S Y, LI H, LONG G L. Experimental quantum Hamiltonian identification from measure ment time traces [J]. Science Bulletin, 2017, 62(12): 863-868.
[46] SONE A, CAPPELLARO P. Hamiltonian identifiability assisted by a single-probe measurement [J]. Physical Review A, 2017, 95(2): 022335.
[47] SONE A, CAPPELLARO P. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe [J]. Physical Review A, 2017, 96(6): 062334.
[48] QI X L, RANARD D. Determining a local hamiltonian from a single eigenstate [J]. Quantum, 2019, 3: 159.
[49] DE CLERCQ L E, OSWALD R, FLÜHMANN C, et al. Estimation of a general time-dependent Hamiltonian for a single qubit [J]. Nature communications, 2016, 7(1): 1-8.
[50] BAIREY E, ARAD I, LINDNER N H. Learning a local Hamiltonian from local measurements [J]. Physical Review Letters, 2019, 122(2): 020504.
[51] DUPONT M, MACÉ N, LAFLORENCIE N. From eigenstate to Hamiltonian: Prospects for ergodicity and localization [J]. Physical Review B, 2019, 100(13): 134201.
[52] LI Z, ZOU L, HSIEH T H. Hamiltonian tomography via quantum quench [J]. Physical Review Letters, 2020, 124(16): 160502.
[53] WANG J, PAESANI S, SANTAGATI R, et al. Experimental quantum Hamiltonian learning [J]. Nature Physics, 2017, 13(6): 551-555.
[54] KOKAIL C, VAN BIJNEN R, ELBEN A, et al. Entanglement Hamiltonian tomography in quantum simulation [J]. Nature Physics, 2021, 17(8): 936-942.
[55] XIN T, LI Y, FAN Y A, et al. Quantum Phases of Three-Dimensional Chiral Topological Insu lators on a Spin Quantum Simulator [J]. Physical Review Letters, 2020, 125(9): 090502.
[56] LONG G, FENG G, SPRENGER P. Overcoming synthesizer phase noise in quantum sensing [J]. Quantum Engineering, 2019, 1(4): e27.
[57] NIE X, WEI B B, CHEN X, et al. Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators [J]. Physical Review Letters, 2020, 124(25): 250601.
[58] WU X, YANG Y H, WANG Y K, et al. Determination of stabilizer states [J]. Physical Review A, 2015, 92(1): 012305.
[59] FLAMMIA S T, LIU Y K. Direct fidelity estimation from few Pauli measurements [J]. Physical Review Letters, 2011, 106(23): 230501.
[60] DA SILVA M P, LANDON-CARDINAL O, POULIN D. Practical characterization of quantum devices without tomography [J]. Physical Review Letters, 2011, 107(21): 210404.
[61] AFFLECK I, KENNEDY T, LIEB E H, et al. Rigorous results on valence-bond ground states in antiferromagnets [M]//Condensed Matter Physics and Exactly Soluble Models. Springer, 2004: 249-252.
[62] BRAVYI S, BROWNE D, CALPIN P, et al. Simulation of quantum circuits by low-rank stabi lizer decompositions [J]. Quantum, 2019, 3: 181.
[63] ŻYCZKOWSKI K, PENSON K A, NECHITA I, et al. Generating random density matrices [J]. Journal of Mathematical Physics, 2011, 52(6): 062201.
[64] ZHAO D, WEI C, XUE S, et al. Characterizing quantum simulations with quantum tomography on a spin quantum simulator [J]. Physical Review A, 2021, 103(5): 052403.
[65] SAK H, SENIOR A, BEAUFAYS F. Long short-term memory based recurrent neural net work architectures for large vocabulary speech recognition [J]. arXiv preprint arXiv:1402.1128, 2014.
[66] BANCHI L, GRANT E, ROCCHETTO A, et al. Modelling non-Markovian quantum processes with recurrent neural networks [J]. New Journal of Physics, 2018, 20(12): 123030.
[67] FLURIN E, MARTIN L S, HACOHEN-GOURGY S, et al. Using a recurrent neural network to reconstruct quantum dynamics of a superconducting qubit from physical observations [J].Physical Review X, 2020, 10(1): 011006.
[68] MINAKAWA T, NASU J, KOGA A. Quantum and classical behavior of spin-S Kitaev models in the anisotropic limit [J]. Physical Review B, 2019, 99(10): 104408.
[69] TAKAGI H, TAKAYAMA T, JACKELI G, et al. Concept and realization of Kitaev quantum spin liquids [J]. Nature Reviews Physics, 2019, 1(4): 264-280.
[70] XIN T. Improved quantum state tomography for systems with XX+ YY couplings and Z read outs [J]. Physical Review A, 2020, 102(5): 052410.
[71] KEITH D, HOUSE M, DONNELLY M, et al. Single-shot spin readout in semiconductors near the shot-noise sensitivity limit [J]. Physical Review X, 2019, 9(4): 041003.
[72] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trapped-ion quantum computing: Progress and challenges [J]. Applied Physics Reviews, 2019, 6(2): 021314.
[73] XIN T, WANG B X, LI K R, et al. Nuclear magnetic resonance for quantum computing: tech niques and recent achievements [J]. Chinese Physics B, 2018, 27(2): 020308.
[74] GAMBETTA J, BRAFF W, WALLRAFF A, et al. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement [J]. Physical Review A, 2007, 76(1): 012325.
[75] NACHMAN B, URBANEK M, DE JONG W A, et al. Unfolding quantum computer readout noise [J]. Npj Quantum Information, 2020, 6(1): 1-7.
[76] CHE L, WEI C, HUANG Y, et al. Learning quantum Hamiltonians from single-qubit measure ments [J]. Physical Review Research, 2021, 3(2): 023246.
修改评论