中文版 | English
题名

Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order

作者
通讯作者Jin Zhang
发表日期
2022
DOI
发表期刊
ISSN
2168-2275
EISSN
2168-2275
卷号PP期号:99页码:1-13
摘要
Gridless methods show great superiority in line spectral estimation. These methods need to solve an atomic l norm (i.e., the continuous analog of l norm) minimization problem to estimate frequencies and model order. Since this problem is NP-hard to compute, relaxations of the atomic l norm, such as the nuclear norm and reweighted atomic norm, have been employed for promoting sparsity. However, the relaxations give rise to a resolution limit, subsequently leading to biased model order and convergence error. To overcome the above shortcomings of relaxation, we propose a novel idea of simultaneously estimating the frequencies and model order using the atomic l norm. To accomplish this idea, we build a multiobjective optimization model. The measurement error and the atomic l norm are taken as the two optimization objectives. The proposed model directly exploits the model order via the atomic l norm, thus breaking the resolution limit. We further design a variable-length evolutionary algorithm to solve the proposed model, which includes two innovations. One is a variable-length coding and search strategy. It flexibly codes and interactively searches diverse solutions with different model orders. These solutions act as steppingstones that helpfully exploring the variable and open-ended frequency search space and provide extensive potentials toward the optima. Another innovation is a model-order pruning mechanism, which heuristically prunes less contributive frequencies within the solutions, thus significantly enhancing convergence and diversity. Simulation results confirm the superiority of our approach in both frequency estimation and model-order selection.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20222812349749
EI主题词
Atoms ; Calculations ; Errors ; Evolutionary Algorithms ; Latexes ; Multiobjective Optimization ; Spectrum Analysis
EI分类号
Colloid Chemistry:801.3 ; Mathematics:921 ; Optimization Techniques:921.5 ; Atomic And Molecular Physics:931.3
Scopus记录号
2-s2.0-85133797135
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9800984
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347866
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
3.School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
第一作者单位斯发基斯可信自主系统研究院
通讯作者单位计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Bai Yan,Qi Zhao,Jin Zhang,et al. Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order[J]. IEEE Transactions on Cybernetics,2022,PP(99):1-13.
APA
Bai Yan,Qi Zhao,Jin Zhang,J. Andrew Zhang,&Xin Yao.(2022).Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order.IEEE Transactions on Cybernetics,PP(99),1-13.
MLA
Bai Yan,et al."Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order".IEEE Transactions on Cybernetics PP.99(2022):1-13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2022-Gridless_Evolut(1348KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai Yan]的文章
[Qi Zhao]的文章
[Jin Zhang]的文章
百度学术
百度学术中相似的文章
[Bai Yan]的文章
[Qi Zhao]的文章
[Jin Zhang]的文章
必应学术
必应学术中相似的文章
[Bai Yan]的文章
[Qi Zhao]的文章
[Jin Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2022-Gridless_Evolutionary_Approach_for_Line_Spectral_Estimation_With_Unknown_Model_Order.pdf
格式: Adobe PDF
文件名: 2022-Gridless_Evolutionary_Approach_for_Line_Spectral_Estimation_With_Unknown_Model_Order.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。