题名 | Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order |
作者 | |
通讯作者 | Jin Zhang |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 2168-2275
|
EISSN | 2168-2275
|
卷号 | PP期号:99页码:1-13 |
摘要 | Gridless methods show great superiority in line spectral estimation. These methods need to solve an atomic l norm (i.e., the continuous analog of l norm) minimization problem to estimate frequencies and model order. Since this problem is NP-hard to compute, relaxations of the atomic l norm, such as the nuclear norm and reweighted atomic norm, have been employed for promoting sparsity. However, the relaxations give rise to a resolution limit, subsequently leading to biased model order and convergence error. To overcome the above shortcomings of relaxation, we propose a novel idea of simultaneously estimating the frequencies and model order using the atomic l norm. To accomplish this idea, we build a multiobjective optimization model. The measurement error and the atomic l norm are taken as the two optimization objectives. The proposed model directly exploits the model order via the atomic l norm, thus breaking the resolution limit. We further design a variable-length evolutionary algorithm to solve the proposed model, which includes two innovations. One is a variable-length coding and search strategy. It flexibly codes and interactively searches diverse solutions with different model orders. These solutions act as steppingstones that helpfully exploring the variable and open-ended frequency search space and provide extensive potentials toward the optima. Another innovation is a model-order pruning mechanism, which heuristically prunes less contributive frequencies within the solutions, thus significantly enhancing convergence and diversity. Simulation results confirm the superiority of our approach in both frequency estimation and model-order selection. |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20222812349749
|
EI主题词 | Atoms
; Calculations
; Errors
; Evolutionary Algorithms
; Latexes
; Multiobjective Optimization
; Spectrum Analysis
|
EI分类号 | Colloid Chemistry:801.3
; Mathematics:921
; Optimization Techniques:921.5
; Atomic And Molecular Physics:931.3
|
Scopus记录号 | 2-s2.0-85133797135
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9800984 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/347866 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China 2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China 3.School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia |
第一作者单位 | 斯发基斯可信自主系统研究院 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Bai Yan,Qi Zhao,Jin Zhang,et al. Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order[J]. IEEE Transactions on Cybernetics,2022,PP(99):1-13.
|
APA |
Bai Yan,Qi Zhao,Jin Zhang,J. Andrew Zhang,&Xin Yao.(2022).Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order.IEEE Transactions on Cybernetics,PP(99),1-13.
|
MLA |
Bai Yan,et al."Gridless Evolutionary Approach for Line Spectral Estimation With Unknown Model Order".IEEE Transactions on Cybernetics PP.99(2022):1-13.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2022-Gridless_Evolut(1348KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论