中文版 | English
题名

基于光热法的热界面材料接触热阻研究

其他题名
STUDY OF THERMAL CONTACT RESISTANCE OF THERMAL INTERFACE MATERIALS BASED ON PHOTOTHERMAL MRTHOD
姓名
姓名拼音
WANG Liuxin
学号
12032302
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
曾小亮
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2022-05-12
论文提交日期
2022-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       随着电子产品不断向集成化、小型化、智能化发展,其工作时的热流密度急剧增加, 这些热量将严重影响电子元器件的使用性能、寿命和可靠性。相关研究表明,温度每升高 10℃,电子产品的失效概率将增加 50%,电子封装领域的热管理问题日益突出。热界面材料在热管理中起着重要的作用,其可以填充接触面间不能紧密贴合而产生的空隙。聚合物基热界面材料是目前广泛使用的热界面材料,具有易加工、密度小,成本低等优点。面对日益增长的散热需求,提高聚合物基热界面材料的热导率以及降低热界面材料应用时的接触热阻是学术界和产业界的研究热点。采用高导热填料填充的方式来提升聚合物基热界面材料的热导率时,聚合物基体与高导热填料之间的接触热阻是制约其热导率提升的关键。 因此,准确地表征热界面材料应用中所涉及的接触热阻并对其进行调控,明晰界面热阻的产生机理和影响因素,对热界面材料的设计、加工和应用有重要意义。
       针对填料与聚合物基体间的界面热阻,本文搭建时域热反射法实验装置,采用光热反射法对铝和有机硅基体间的界面热阻进行研究,依据双向热流模型,利用磁控溅射,旋转涂膜等制备工艺,制作 SiO2/Al/Silicone 多层结构样品,对铝和有机硅之间的界面热导(界面热阻的倒数)进行了准确表征,测得 GAl-ilicone 为~60 (MW/m2·K)。随后采用表面改性的方法对界面热导进行调控,接枝不同硅烷偶联剂后 GAl-Silicone 最大为~140 (MW/m2·K),实现了界面热导约三倍的提升。
      针对热界面材料实际应用时与热源或热沉的接触热阻,本文搭建光热辐射法实验装置,对碳纤维导热垫、相变材料、液态金属、导热凝胶等常见热界面材料与硅之间的接触热阻进行测量,设计了满足光热辐射法测试要求并能施加压力的夹具,研究了不同压力下接触热阻的变化。测试结果表明选定热界面材料与硅的接触热阻在 10-5~10-6 量级,其中液态金属与硅的接触热阻最小,为~0.5× 10-6 (m2·K/W)。导热凝胶与硅的接触热阻最大,为~1.5× 10-5 (m2·K/W)。不同热界面材料与硅的接触热阻随压力加载的变化趋势各异,这与其自身的相态、粘弹性等物理性质直接相关。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] RAMSEY J, JONES K W, MITRA A K. Thermal management solutions to advanced integrated and discrete bipolar junction (BJT) device structures[R]: SAE Technical Paper,2004.
[2] MA H, GAO B, WANG M, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review[J]. Journal of Materials Science,2021, 56(2): 1064-1086.
[3] LYEO H K, CAHILL D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Physical Review B, 2006, 73(14): 144301.
[4] PING L, HOU P X, LIU C, et al. Vertically aligned carbon nanotube arrays as a thermal interface material[J]. APL Materials, 2019, 7(2): 020902.
[5] KHAN J, MOMIN S A, MARIATTI M. A review on advanced carbon-based thermal interface materials for electronic devices[J]. Carbon, 2020, 168: 65-112.
[6] ROY C K, BHAVNANI S, HAMILTON M C, et al. Thermal performance of low melting temperature alloys at the interface between dissimilar materials[J]. Applied Thermal Engineering, 2016, 99: 72-79.
[7] PRASHER R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE, 2006, 94(8): 1571-1586.
[8] GOWDAA, ESLER D, PAISNER S N, et al. Reliability testing of silicone-based thermal greases [IC cooling applications][C]//Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005. IEEE, 2005: 64-71.
[9] 蔡楚玥,方晓明,凌子夜,张正国.相变热界面材料导热增强及定形改善的研究进展[J/OL].化工进展:1-12
[2022-04-19].DOI:10.16085/j.issn.1000-6613.2021-2411.
[10] CHEN S, DENG Z, LIU J. High performance liquid metal thermal interface materials[J]. Nanotechnology, 2020, 32(9): 092001.
[11] SMITH B, BRUNSCHWILER T, MICHEL B. Comparison of transient and static test methods for chip-to-sink thermal interface characterization[J]. Microelectronics Journal, 2009, 40(9): 1379-1386.
[12] COOPER M G, MIKIC B B, YOVANOVICH M M. Thermal contact conductance[J].International Journal of Heat and Mass Transfer, 1969, 12(3): 279-300.
[13] BAHRAMI M, CULHAM J R, YOVANOVICH M M, et al. Thermal contact resistance of nonconforming rough surfaces, part 2: thermal model[J]. Journal of Thermophysics and Heat Transfer, 2004, 18(2): 218-227.
[14] KAPITZA P L. Heat Transfer and Superfluidity of Helium II[J]. Physical Review,1941, 60(4): 354-355.
[15] KÜRTI N, ROLLIN B V, SIMON F. Preliminary experiments on temperature equilibria at very low temperatures[J]. Physica, 1936, 3(1-4): 266-274.
[16] KEESOM W H, KEESOM A P. On the heat conductivity of liquid helium[J]. Physica,1936, 3(5): 359-360.
[17] DOU R, GE T, LIU X, et al. Effects of contact pressure, interface temperature, and surface roughness on thermal contact conductance between stainless steel surfaces under atmosphere condition[J]. International Journal of Heat and Mass Transfer, 2016, 94: 156-163.
[18] TARIQ A, ASIF M. Experimental investigation of thermal contact conductance for nominally flat metallic contact[J]. Heat and Mass Transfer, 2016, 52(2): 291-307.
[19] CLAUSING A M, CHAO B T. Thermal contact resistance in a vacuum environment[J]. Journal of Heat Transfer, 1965. 87(2): 243-250.
[20] YOVANOVICH M M. Overall constriction resistance between contacting rough,wavy surfaces[J]. International Journal of Heat and Mass Transfer, 1969, 12(11): 1517-1520.
[21] NISHINO K, YAMASHITA S, TORII K. Thermal contact conductance under low applied load in a vacuum environment[J]. Experimental Thermal and Fluid Science, 1995,10(2): 258-271.
[22] SRIDHAR M R, YOVANOVICH M M. Review of elastic and plastic contact conductance models-Comparison with experiment[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(4): 633-640.
[23] GREENWOOD J. The area of contact between rough surfaces and flats[J]. Journal of Lubrication Technology, 1967, 89(1): 81-87.
[24] KUMAR S S, RAMAMURTHI K. Prediction of thermal contact conductance in vacuum using Monte Carlo simulation[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(1): 27-33.
[25] LEUNG M, HSIEH C K, GOSWAMI D Y. Prediction of thermal contact conductance in vacuum by statistical mechanics[J]. Journal of Heat Transfer, 1998. 120(1): 51-57.
[26] 赵 兰萍 ,徐 烈. 固体界 面间 接触导 热的 分形模型 [J]. 同济 大学学 报 (自然 科学版 ), 2003(03):296-299.
[27] WANG H L, WAGNER T, ESKA G. An aluminium heat switch made from cold-pressed Cu–Al composite[J]. Physica B: Condensed Matter, 2000, 284: 2024-2025.
[28] SWARTZ E T, POHL R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(3): 605-668.
[29] LITTLE W A. The transport of heat between dissimilar solids at low temperatures[J]. Canadian Journal of Physics, 1959, 37(3): 334-349.
[30] DUDA J C, SMOYER J L, NORRIS P M, et al. Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials[J]. Applied Physics Letters, 2009, 95(3): 031912.
[31] PRASHER R. Phonon transport in anisotropic scattering particulate media[J]. Heat Transfer, 2003, 125(6): 1156-1162.
[32] CARSLAW H S, JAEGER J C. Conduction of heat in solids[R]. Clarendon press,1959.
[33] DAMES C, CHEN G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires[J]. Journal of Applied Physics, 2004, 95(2): 682-693.
[34] HOPKINS P E. Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces[J]. Journal of Applied Physics, 2009,106(1): 013528.
[35] HOPKINS P E, NORRIS P M. Effects of joint vibrational states on thermal boundary conductance[J]. Nanoscale and Microscale Thermophysical Engineering, 2007, 11(3-4): 247-257.
[36] PRASHER R S, PHELAN P E. A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance[J]. Heat Transfer, 2001, 123(1): 105-112.
[37] HOPKINS P E, DUDA J C, Norris P M. Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance[J]. Journal of Heat Transfer, 2011, 133(6).
[38] BEECHEM T, GRAHAM S, HOPKINS P, et al. Role of interface disorder on thermal boundary conductance using a virtual crystal approach[J]. Applied Physics Letters, 2007, 90(5): 054104.
[39] CHEN G. Phonon wave heat conduction in thin films and superlattices[J]. Journal of heat transfer, 1999, 121(4): 945-953.
[40] ZHANG Y, MA D, ZANG Y, et al. A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance[J]. Frontiers in Energy Research, 2018, 6: 48.
[41] CUI T, LI Q, XUAN Y, et al. Multiscale simulation of thermal contact resistance in electronic packaging[J]. International Journal of Thermal Sciences, 2014, 83: 16-24.
[42] EL MHAMDI O, ELALAMI S. Solving heat transfer problems with thermal contact resistance using the lattice Boltzmann method[C]//2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). IEEE, 2017: 1-6.
[43] 张平,宣益民,李强.界面接触热阻的研究进展[J].化工学报,2012,63(02):335- 349.
[44] ZHANG P, XUAN Y M, LI Q. A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux[J]. Experimental Thermal and Fluid Science, 2014, 54: 204-211.
[45] HIROTANI J, IKUTA T, NISHIYAMA T, et al. Thermal boundary resistance between the end of an individual carbon nanotube and a Au surface[J]. Nanotechnology, 2011, 22(31): 315702.
[46] YUE Y, ZHANG J, WANG X. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC[J]. Small, 2011, 7(23): 3324-3333.
[47] GU J, SHE J, YUE Y. Micro/nanoscale thermal characterization based on spectroscopy techniques[J]. ES Energy & Environment, 2020, 9(2): 15-27.
[48] XIAN Y, ZHANG P, ZHAI S, et al. Experimental characterization methods for thermal contact resistance: A review[J]. Applied Thermal Engineering, 2018, 130: 1530-1548.
[49] ZHAO W, CHEN W, YUE Y, et al. In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material[J]. Applied Thermal Engineering, 2017, 113: 481-489.
[50] LI Q Y, KATAKAMI K, IKUTA T, et al. Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method[J]. Carbon, 2019, 141: 92-98.
[51] CAHILL D G, KATIYAR M, ABELSON J R. Thermal conductivity of a-Si: H thin films[J].Physical Review B, 1994, 50(9): 6077-6081.
[52] KUTHATI S, PATTAMATTA A. Thermal conductivity and thermal interface resistance measurements of thin films using 3ω method[J]. International Journal of Micro-Nano Scale Transport, 2014. 4(3-4): 85-106.
[53] ZHENG K, ZHU J, MA Y M, et al. Interfacial thermal resistance between highdensity polyethylene (HDPE) and sapphire[J]. Chinese Physics B, 2014, 23(10): 107307.
[54] ABDULAGATOV I M, ABDULAGATOVA Z Z, KALLAEV S N, et al. Thermal diffusivity and heat-capacity measurements of sandstone at high temperatures using laser flash and DSC methods[J]. International Journal of Thermophysics, 2015, 36(4): 658-691.
[55] ABAD B, BORCA-TASCIUC D A, MARTIN-GONZALEZ M S. Non-contact methods for thermal properties measurement[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1348-1370.
[56] LOSEGO M D, MOH L, ARPIN K A, et al. Interfacial thermal conductance in spun-cast polymer films and polymer brushes[J]. Applied Physics Letters, 2010, 97(1): 011908.
[57] LOSEGO M D, GRADY M E, SOTTOS N R, et al. Effects of chemical bonding on heat transport across interfaces[J]. Nature Materials, 2012, 11(6): 502-506.
[58] SUN F, ZHANG T, JOBBINS M M, et al. Molecular Bridge Enables Anomalous Enhancement in Thermal Transport across Hard-Soft Material Interfaces[J]. Advanced Materials, 2014, 26(35): 6093-6099.
[59] 郑鲲. 典型导热高分子复合材料界面热导的研究[D]. 中国科学院大学,2015.
[60] LU J, YUAN K, SUN F, et al. Self-assembled monolayers for the polymer/semiconductor interface with improved interfacial thermal management[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42708-42714.
[61] Chang G, Sun F, Wang L, et al. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26507-26517.
[62] ZHENG X, WANG X, ZHANG T, et al. Study on the interfacial thermal conductance between metals and phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120823.
[63] XU B, HU S, HUNG S W, et al. Weaker bonding can give larger thermal conductance at highly mismatched interfaces[J]. Science Advances, 2021, 7(17): eabf8197.
[64] LEE H. Probing Water at the Coating/Aluminum Oxide Interface[D]. University of Akron, 2014.
[65] SCHMIDT A, CHIESA M, CHEN X, et al. An optical pump-probe technique for measuring the thermal conductivity of liquids[J]. Review of Scientific Instruments, 2008,79(6): 064902.
[66] STEVENS R J, SMITH A N, NORRIS P M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique[J]. Heat Transfer, 2005, 127(3): 315-322
[67] HOPKINS P E, KAEHR B, PHINNEY L M, et al. Measuring the thermal conductivity of porous,transparent SiO2 films with time domain thermoreflectance[J]. Journal of Heat Transfer, 2011, 133(6): 061601.
[68] MEIER T, MENGES F, NIRMALRAJ P, et al. Length-dependent thermal transport along molecular chains[J]. Physical Review Letters, 2014, 113(6): 060801.
[69] GE Z, CAHILL D G, BRAUN P V. Thermal conductance of hydrophilic and hydrophobic interfaces[J]. Physical Review Letters, 2006, 96(18): 186101.
[70] HARIKRISHNA H, DUCKER W A, HUXTABLE S T. The influence of interface bonding on thermal transport through solid–liquid interfaces[J]. Applied Physics Letters, 2013, 102(25):251606.
[71] ALMOND D P, PATEL P, PATEL P M. Photothermal science and techniques[M]. Springer Science & Business Media, 1996.
[72] ROSENCWAIG A, GERSHO A. Theory of the photoacoustic effect with solids[J]. Journal of Applied Physics, 1976, 47(1): 64-69.
[73] UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking[J]. Advanced Materials, 2014, 26(33): 5857-5862.
[74] ZHENG Y, HE Z Z, YANG J, et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism[J]. Scientific reports, 2014,4(1): 1-8.
[75] JI Y, YAN H, XIAO X, et al. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates[J]. Applied Thermal Engineering, 2020, 166: 114649.
[76] PRASHER R S, MATAYABAS J C. Thermal contact resistance of cured gel polymeric thermal interface material[J]. IEEE Transactions on Components and Packaging Technologies, 2004, 27(4): 702-709.
[77] YANG J, YU W, ZHANG Y, et al. Graphene double cross-linked thermally conductive hydrogel with low thermal contact resistance, flexibility and self-healing performance[J]. International Communications in Heat and Mass Transfer, 2021, 127:105537

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TK3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347871
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
王刘鑫. 基于光热法的热界面材料接触热阻研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032302-王刘鑫-中国科学院深圳(4167KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王刘鑫]的文章
百度学术
百度学术中相似的文章
[王刘鑫]的文章
必应学术
必应学术中相似的文章
[王刘鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。