中文版 | English
题名

Modulation Recognition Using Signal Enhancement and Multistage Attention Mechanism

作者
通讯作者Yuan Zeng; Yi Gong
发表日期
2022-11-01
DOI
发表期刊
ISSN
1536-1276
EISSN
1558-2248
卷号21期号:11页码:1-1
摘要

Robustness against noise is critical for modulation recognition (MR) approaches deployed in real-world communication systems. In MR systems, a corrupted signal is normally enhanced using low-level signal enhancement (SE) before signal classification (SC). Many existing approaches address signal distortion problems by compartmentalizing SE from SC. While those approaches allow for efficient development, they also dictate compartmentalized performance metrics, without feedback from the SC module. For example, SE modules are designed using perceptual signal quality metrics but not with SC in mind. To improve the effectiveness of SE on MR, this paper proposes a joint learning framework consisting of three cascaded modules: dual-channel spectrum fusion, SE, and SC. Instead of separately processing SE and SC, these three modules are integrated into one framework and jointly trained with a single recognition loss. In contrast to estimating clean signals, the SE module in the proposed joint learning framework is trained to predict a ratio mask and find important time-frequency bins for the SC module. We integrate a multistage attention mechanism into the framework to further increase the robustness. The multistage attention mechanism is deployed to strengthen the recognition-related features learned from context information in channel, time, and frequency domains. We evaluate the recognition performance of the proposed framework and its modules on two benchmark datasets: RadioML2016.10a and RadioML2016.10b. The experiment results show that the proposed joint learning framework outperforms the separate learning framework. Moreover, comparisons are performed with several existing learning-based MR methods in the literature. The proposed joint learning framework leads to significant performance improvement, especially for modulated signals corrupted by channel noise.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2019YFB1802800] ; National Natural Science Foundation in China[
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000882003900074
出版者
EI入藏号
20222612277651
EI主题词
Benchmarking ; Feature Extraction ; Neural Networks ; Robustness (Control Systems) ; Speech Recognition
EI分类号
Control Systems:731.1 ; Speech:751.5
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796039
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347878
专题工学院_电子与电气工程系
前沿与交叉科学研究院
作者单位
1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
2.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
第一作者单位电子与电气工程系
通讯作者单位前沿与交叉科学研究院;  电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Shangao Lin,Yuan Zeng,Yi Gong. Modulation Recognition Using Signal Enhancement and Multistage Attention Mechanism[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2022,21(11):1-1.
APA
Shangao Lin,Yuan Zeng,&Yi Gong.(2022).Modulation Recognition Using Signal Enhancement and Multistage Attention Mechanism.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,21(11),1-1.
MLA
Shangao Lin,et al."Modulation Recognition Using Signal Enhancement and Multistage Attention Mechanism".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 21.11(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shangao Lin]的文章
[Yuan Zeng]的文章
[Yi Gong]的文章
百度学术
百度学术中相似的文章
[Shangao Lin]的文章
[Yuan Zeng]的文章
[Yi Gong]的文章
必应学术
必应学术中相似的文章
[Shangao Lin]的文章
[Yuan Zeng]的文章
[Yi Gong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。