中文版 | English
题名

A review of population-based metaheuristics for large-scale black-box global optimization: Part A

作者
发表日期
2021
DOI
发表期刊
ISSN
1941-0026
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
Scalability of optimization algorithms is a major challenge in coping with the ever-growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly, population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird's-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part I of the series covers two major algorithmic approaches to large-scale global optimization: 1) problem decomposition and 2) memetic algorithms. Part II of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally, touches upon the pitfalls and challenges of current research and identifies several potential areas for future research.
关键词
相关链接[IEEE记录]
收录类别
语种
英语
学校署名
其他
资助项目
ARC (Australian Research Council)["DP180101170","DP190101271"] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000862385200005
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9627116
引用统计
被引频次[WOS]:44
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347892
专题工学院_计算机科学与工程系
作者单位
1.School of Computing, University of Leeds, and Leeds University Business School, Leeds LS2 9JT, UK, and also with the current chair of the IEEE Taskforce on Large-Scale Global Optimization. (e-mail: mn.omidvar@gmail.com)
2.School of Computing Technologies, RMIT University, Melbourne, Australia.
3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China, and also with the School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.
推荐引用方式
GB/T 7714
Mohammad Nabi Omidvar,Xiaodong Li,Xin Yao. A review of population-based metaheuristics for large-scale black-box global optimization: Part A[J]. IEEE Transactions on Evolutionary Computation,2021,PP(99):1-1.
APA
Mohammad Nabi Omidvar,Xiaodong Li,&Xin Yao.(2021).A review of population-based metaheuristics for large-scale black-box global optimization: Part A.IEEE Transactions on Evolutionary Computation,PP(99),1-1.
MLA
Mohammad Nabi Omidvar,et al."A review of population-based metaheuristics for large-scale black-box global optimization: Part A".IEEE Transactions on Evolutionary Computation PP.99(2021):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mohammad Nabi Omidvar]的文章
[Xiaodong Li]的文章
[Xin Yao]的文章
百度学术
百度学术中相似的文章
[Mohammad Nabi Omidvar]的文章
[Xiaodong Li]的文章
[Xin Yao]的文章
必应学术
必应学术中相似的文章
[Mohammad Nabi Omidvar]的文章
[Xiaodong Li]的文章
[Xin Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。