中文版 | English
题名

Deep Tri-Training for Semi-Supervised Image Segmentation

作者
发表日期
2022
DOI
发表期刊
ISSN
2377-3774
卷号PP期号:99页码:1-8
摘要
Semantic segmentation is of great value to autonomous driving and many robotic applications, while it highly depends on costly and time-consuming pixel-level annotation. To make full use of unlabeled data, this work proposes a deep tri-training framework (dubbed DTT) to utilize labeled along with unlabeled data for training in a semi-supervised manner. Concretely, in the DTT framework, three networks are initialized with the same structure but different parameters. The networks are optimized circularly, where one network is trained in each optimization step with the guidance of the other two networks. A simple yet effective voting mechanism is adopted to construct reliable training sets from unlabeled data for the training stage and fusing multi-experts prediction in the testing stage. Exhaustive experiments on Cityscapes and PASCAL VOC 2012 demonstrate that the proposed DTT realizes state-of-the-art performance in the semi-supervised segmentation task. The source code is made publicly available.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2021ZD0140407] ; National Natural Science Foundation of China[U21A20523]
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:000835813000036
出版者
EI入藏号
20222812348089
EI主题词
Computer vision ; Deep learning ; Job analysis ; Object detection ; Semantic Segmentation
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9804753
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347910
专题工学院_电子与电气工程系
作者单位
1.State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
2.International School of Information Science & Engnieering, Dalian University of Technology, Dalian, China
3.School of Mechanical Engineering, Tongji University, Shanghai, China
4.School of Computer Science, Northwestern Polytechnical University, Xi’an, China
5.School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
6.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Shan An,Haogang Zhu,Jiaao Zhang,et al. Deep Tri-Training for Semi-Supervised Image Segmentation[J]. IEEE Robotics and Automation Letters,2022,PP(99):1-8.
APA
Shan An.,Haogang Zhu.,Jiaao Zhang.,Junjie Ye.,Siliang Wang.,...&Hong Zhang.(2022).Deep Tri-Training for Semi-Supervised Image Segmentation.IEEE Robotics and Automation Letters,PP(99),1-8.
MLA
Shan An,et al."Deep Tri-Training for Semi-Supervised Image Segmentation".IEEE Robotics and Automation Letters PP.99(2022):1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shan An]的文章
[Haogang Zhu]的文章
[Jiaao Zhang]的文章
百度学术
百度学术中相似的文章
[Shan An]的文章
[Haogang Zhu]的文章
[Jiaao Zhang]的文章
必应学术
必应学术中相似的文章
[Shan An]的文章
[Haogang Zhu]的文章
[Jiaao Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。