中文版 | English
题名

Inertial Odometry Using Hybrid Neural Network with Temporal Attention for Pedestrian Localization

作者
发表日期
2022
DOI
发表期刊
ISSN
1557-9662
EISSN
1557-9662
卷号PP期号:99页码:1-1
摘要
In this work, a novel hybrid neural network with temporal attention (HNNTA) is proposed for inertial pedestrian localization. The HNNTA model employs the convolutional neural network (CNN) for extracting sectional features from the IMU data, followed by the long short-term memory (LSTM) network to capture the global temporal information. A temporal attention mechanism is designed to weigh the hidden states produced by the LSTM network and generate the final features for velocity prediction. Specifically, the proposed temporal attention mechanism is composed of the CNN feature refinement module and the sigmoid score normalization function. We utilize different 1-D filters to refine the temporal hidden states from previous refined time indexes and form the value matrix with each row containing different features along with the entire window time indexes and each column representing individual features from the same time spans. We then employ the sigmoid function to normalize the dot-product alignment between features from different time spans and that of the last refined time index. We employ the RoNIN dataset to evaluate the HNNTA model, which contains the largest and most natural IMU measurements. We employ extensive erosion experiments to show the effectiveness of the HNNTA model design. Compared with the state-of-the-art method, the HNNTA model provides 10.39% higher 50th percentile accuracy for all phone carriers that have been seen in the training set and 8.69% higher for those that have not been seen. The real-world experiments with IMU measurements collected on the CUHK campus further demonstrate the better generalization capability of the HNNTA model.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2019YFB1312400] ; Hong Kong Research Grants Council (RGC) Collaborative Research Fund (CRF)[C4063-18G]
WOS研究方向
Engineering ; Instruments & Instrumentation
WOS类目
Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:000838427900007
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9808172
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347911
专题工学院_电子与电气工程系
作者单位
1.Robotics, Perception and Artificial Intelligence Lab in the Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
2.Shenzhen Key Laboratory of Robotics Perception and Intelligence, and the Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Yingying Wang,Hu Cheng,Max Q.-H. Meng. Inertial Odometry Using Hybrid Neural Network with Temporal Attention for Pedestrian Localization[J]. IEEE Transactions on Instrumentation and Measurement,2022,PP(99):1-1.
APA
Yingying Wang,Hu Cheng,&Max Q.-H. Meng.(2022).Inertial Odometry Using Hybrid Neural Network with Temporal Attention for Pedestrian Localization.IEEE Transactions on Instrumentation and Measurement,PP(99),1-1.
MLA
Yingying Wang,et al."Inertial Odometry Using Hybrid Neural Network with Temporal Attention for Pedestrian Localization".IEEE Transactions on Instrumentation and Measurement PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yingying Wang]的文章
[Hu Cheng]的文章
[Max Q.-H. Meng]的文章
百度学术
百度学术中相似的文章
[Yingying Wang]的文章
[Hu Cheng]的文章
[Max Q.-H. Meng]的文章
必应学术
必应学术中相似的文章
[Yingying Wang]的文章
[Hu Cheng]的文章
[Max Q.-H. Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。