中文版 | English
题名

Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning

作者
发表日期
2022
DOI
发表期刊
ISSN
2169-3536
卷号10页码:68042-68056
摘要
Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61876075] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07 x 386] ; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000819824100001
出版者
EI入藏号
20222812350462
EI主题词
Big data ; Cluster analysis ; Clustering algorithms ; Learning algorithms ; Resonance ; Topology
EI分类号
Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Machine Learning:723.4.2 ; Information Sources and Analysis:903.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Mechanics:931.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9807317
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347912
专题工学院_计算机科学与工程系
作者单位
1.Graduate School of Informatics, Osaka Metropolitan University, Sakai-shi, Osaka, Japan
2.Graduate School of Engineering, Osaka Prefecture University, Sakai-shi, Osaka, Japan
3.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Naoki Masuyama,Narito Amako,Yuna Yamada,et al. Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning[J]. IEEE Access,2022,10:68042-68056.
APA
Naoki Masuyama,Narito Amako,Yuna Yamada,Yusuke Nojima,&Hisao Ishibuchi.(2022).Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning.IEEE Access,10,68042-68056.
MLA
Naoki Masuyama,et al."Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning".IEEE Access 10(2022):68042-68056.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Naoki Masuyama]的文章
[Narito Amako]的文章
[Yuna Yamada]的文章
百度学术
百度学术中相似的文章
[Naoki Masuyama]的文章
[Narito Amako]的文章
[Yuna Yamada]的文章
必应学术
必应学术中相似的文章
[Naoki Masuyama]的文章
[Narito Amako]的文章
[Yuna Yamada]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。