题名 | Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 2169-3536
|
卷号 | 10页码:68042-68056 |
摘要 | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[61876075]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07 x 386]
; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
; Engineering
; Telecommunications
|
WOS类目 | Computer Science, Information Systems
; Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000819824100001
|
出版者 | |
EI入藏号 | 20222812350462
|
EI主题词 | Big data
; Cluster analysis
; Clustering algorithms
; Learning algorithms
; Resonance
; Topology
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Data Processing and Image Processing:723.2
; Machine Learning:723.4.2
; Information Sources and Analysis:903.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Mechanics:931.1
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9807317 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/347912 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Graduate School of Informatics, Osaka Metropolitan University, Sakai-shi, Osaka, Japan 2.Graduate School of Engineering, Osaka Prefecture University, Sakai-shi, Osaka, Japan 3.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Naoki Masuyama,Narito Amako,Yuna Yamada,et al. Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning[J]. IEEE Access,2022,10:68042-68056.
|
APA |
Naoki Masuyama,Narito Amako,Yuna Yamada,Yusuke Nojima,&Hisao Ishibuchi.(2022).Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning.IEEE Access,10,68042-68056.
|
MLA |
Naoki Masuyama,et al."Adaptive Resonance Theory-Based Topological Clustering With a Divisive Hierarchical Structure Capable of Continual Learning".IEEE Access 10(2022):68042-68056.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论