中文版 | English
题名

Data-Driven Long-Landing Event Detection and Interpretability Analysis in Civil Aviation

作者
通讯作者Yang, Jinfeng
发表日期
2022
DOI
发表期刊
ISSN
2169-3536
卷号10页码:64257-64269
摘要
Long-landing Events (LLEs) can occur as a result of pilot's improper operation, resulting in shorter available runways and higher operating costs. The LLE can be effectively pinpointed by analyzing data from the Quick Access Recorder (QAR), which records all of the pilot's operations during takeoff and landing. Traditionally, domain experts inspect LLEs by manually setting thresholds on uni-dimensional data. However, they cannot detect effectively the defects caused by the pilot's maneuvering technique because the potential mutual information between different features in the large amount of data is not considered. This paper proposes a data-driven LLE detection and causation analysis workflow, which can automatically mine and analyze the mutual information, to overcome the existing problems. Firstly, a dataset is established based on the extracted QAR data from 2002 flights, considering the landing phase of the aircraft. Subsequently, this paper proposes a Hybrid Feature Selection (HFS) method for selecting features that are highly correlated with LLEs in both supervised and unsupervised ways. A categorical Light Gradient Boosting Machine (LGBM) with a Bayesian optimization (LGBMBO) model is used to determine the performance improvement. Furthermore, the model is visualized to analyze the marginal effect of key parameters for the LLEs by using SHapley Additive exPlanations (SHAP). The experimental results demonstrate that our model reduces computational cost and achieves better performance. Additionally, this paper demonstrates that LLEs can be avoided during the landing phase by maintaining the appropriate descent speed, aircraft altitude, and descent angle.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[62076166] ; China Postdoctoral Science Foundation[2021M703371] ; Shenzhen Science and Technology Program[RCBS20200714114940262] ; Postdoctoral Foundation Project of Shenzhen Polytechnic[6021330002K] ; General Higher Education Project of Guangdong Provincial Education Department["2020ZDZX3082","2020ZDZX3085"]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000814550400001
出版者
EI入藏号
20222612276826
EI主题词
Aircraft accidents ; Aircraft detection ; Cost reduction ; Feature extraction ; Fighter aircraft ; Learning systems ; Operating costs
EI分类号
Aircraft, General:652.1 ; Military Aircraft:652.1.2 ; Radar Systems and Equipment:716.2 ; Cost and Value Engineering; Industrial Economics:911 ; Cost Accounting:911.1 ; Industrial Economics:911.2 ; Management:912.2 ; Accidents and Accident Prevention:914.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9795010
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347917
专题工学院
作者单位
1.Shenzhen Polytech, Guangdong Hong Kong Macao Greater Bay Area, Inst Appl Artificial Intelligence, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Coll Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Yang, Xiong,Ren, Jin,Li, Junchen,et al. Data-Driven Long-Landing Event Detection and Interpretability Analysis in Civil Aviation[J]. IEEE Access,2022,10:64257-64269.
APA
Yang, Xiong,Ren, Jin,Li, Junchen,Zhang, Haigang,&Yang, Jinfeng.(2022).Data-Driven Long-Landing Event Detection and Interpretability Analysis in Civil Aviation.IEEE Access,10,64257-64269.
MLA
Yang, Xiong,et al."Data-Driven Long-Landing Event Detection and Interpretability Analysis in Civil Aviation".IEEE Access 10(2022):64257-64269.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xiong]的文章
[Ren, Jin]的文章
[Li, Junchen]的文章
百度学术
百度学术中相似的文章
[Yang, Xiong]的文章
[Ren, Jin]的文章
[Li, Junchen]的文章
必应学术
必应学术中相似的文章
[Yang, Xiong]的文章
[Ren, Jin]的文章
[Li, Junchen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。