中文版 | English
题名

Evaluating and Improving Neural Program-Smoothing-based Fuzzing

作者
通讯作者Yuqun Zhang
DOI
发表日期
2022
会议名称
ACM/IEEE 44th International Conference on Software Engineering (ICSE)
ISSN
0270-5257
ISBN
978-1-6654-9589-9
会议录名称
卷号
2022-May
页码
847-858
会议日期
25-27 May 2022
会议地点
Pittsburgh, PA, USA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

Fuzzing nowadays has been commonly modeled as an optimization problem, e.g., maximizing code coverage under a given time budget via typical search-based solutions such as evolutionary algorithms. However, such solutions are widely argued to cause inefficient computing resource usage, i.e., inefficient mutations. To address this issue, two neural program-smoothing-based fuzzers, Neuzz and MTFuzz, have been recently proposed to approximate program branching behaviors via neural network models, which input byte sequences of a seed and output vectors representing program branching behaviors. Moreover, assuming that mutating the bytes with larger gradients can better explore branching behaviors, they develop strategies to mutate such bytes for generating new seeds as test cases. Meanwhile, although they have been shown to be effective in the original papers, they were only evaluated upon a limited dataset. In addition, it is still unclear how their key technical components and whether other factors can impact fuzzing performance. To further investigate neural program-smoothingbased fuzzing, we first construct a large-scale benchmark suite with a total of 28 popular open-source projects. Then, we extensively evaluate Neuzz and MTFuzz on such benchmarks. The evaluation results suggest that their edge coverage performance can be unstable. Moreover, neither neural network models nor mutation strategies can be consistently effective, and the power of their gradient-guidance mechanisms have been compromised. Inspired by such findings, we propose a simplistic technique, PreFuzz, which improves neural program-smoothing-based fuzzers with a resource-efficient edge selection mechanism to enhance their gradient guidance and a probabilistic byte selection mechanism to further boost mutation effectiveness. Our evaluation results indicate that PreFuzz can significantly increase the edge coverage of Neuzz/MTFuzz, and also reveal multiple practical guidelines to advance future research on neural program-smoothing-based fuzzing.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[61902169]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000832185400069
EI入藏号
20222812334229
EI主题词
Budget Control ; Evolutionary Algorithms ; Open Source Software
EI分类号
Computer Software, Data HAndling And Applications:723 ; Artificial Intelligence:723.4
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9794082
引用统计
被引频次[WOS]:14
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/347981
专题南方科技大学
作者单位
1.Southern University of Science and Technology,Shenzhen,China
2.The University of Queensland,Brisbane,Australia
3.Tencent Security Keen Lab,Shanghai,China
4.The University of Hong Kong,Hong Kong,China
5.University of Illinois,Urbana-Champaign,USA
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Mingyuan Wu,Ling Jiang,Jiahong Xiang,et al. Evaluating and Improving Neural Program-Smoothing-based Fuzzing[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:847-858.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mingyuan Wu]的文章
[Ling Jiang]的文章
[Jiahong Xiang]的文章
百度学术
百度学术中相似的文章
[Mingyuan Wu]的文章
[Ling Jiang]的文章
[Jiahong Xiang]的文章
必应学术
必应学术中相似的文章
[Mingyuan Wu]的文章
[Ling Jiang]的文章
[Jiahong Xiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。