中文版 | English
题名

Mousika: Enable General In-Network Intelligence in Programmable Switches by Knowledge Distillation

作者
DOI
发表日期
2022
会议名称
41st IEEE Conference on Computer Communications (IEEE INFOCOM)
ISSN
0743-166X
ISBN
978-1-6654-5823-8
会议录名称
卷号
2022-May
页码
1938-1947
会议日期
2-5 May 2022
会议地点
London, United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Given the power efficiency and Tbps throughput of packet processing, several works are proposed to offload the decision tree (DT) to programmable switches, i.e., in-network intelligence. Though the DT is suitable for the switches' match-action paradigm, it has several limitations. E.g., its range match rules may not be supported well due to the hardware diversity; and its implementation also consumes lots of switch resources (e.g., stages and memory). Moreover, as learning algorithms (particularly deep learning) have shown their superior performance, some more complicated learning models are emerging for networking. However, their high computational complexity and large storage requirement are cause challenges in the deployment on switches. Therefore, we propose Mousika, an in-network intelligence framework that addresses these drawbacks successfully. First, we modify the DT to the Binary Decision Tree (BDT). Compared with the DT, our BDT supports faster training, generates fewer rules, and satisfies switch constraints better. Second, we introduce the teacher-student knowledge distillation in Mousika, which enables the general translation from other learning models to the BDT. Through the translation, we can not only utilize the super learning capabilities of complicated models, but also avoid the computation/memory constraints when deploying them on switches directly for line-speed processing.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key Research and Development Program of China[2020YFB1804704] ; National Natural Science Foundation of China["61972189","61902171"] ; Shenzhen Key Lab of Software Defined Networking[ZDSYS20140509172959989]
WOS研究方向
Computer Science ; Engineering ; Telecommunications
WOS类目
Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000936344400195
EI入藏号
20222712316904
EI主题词
Binary trees ; Deep learning ; Distillation ; Learning algorithms ; Learning systems ; Personnel training
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Machine Learning:723.4.2 ; Chemical Operations:802.3 ; Personnel:912.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796936
引用统计
被引频次[WOS]:25
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/348009
专题南方科技大学
作者单位
1.Tsinghua University,International Graduate School,Shenzhen,China
2.Peng Cheng Laboratory,Shenzhen,China
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Guorui Xie,Qing Li,Yutao Dong,et al. Mousika: Enable General In-Network Intelligence in Programmable Switches by Knowledge Distillation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1938-1947.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guorui Xie]的文章
[Qing Li]的文章
[Yutao Dong]的文章
百度学术
百度学术中相似的文章
[Guorui Xie]的文章
[Qing Li]的文章
[Yutao Dong]的文章
必应学术
必应学术中相似的文章
[Guorui Xie]的文章
[Qing Li]的文章
[Yutao Dong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。