中文版 | English
题名

Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry

作者
发表日期
2022
DOI
发表期刊
ISSN
2377-3774
卷号PP期号:99页码:1-8
摘要
This letter proposes an efficient and probabilistic adaptive voxel mapping method for LiDAR odometry. The map is a collection of voxels; each contains one plane feature that enables the probabilistic representation of the environment and accurate registration of a new LiDAR scan. We further analyze the need for coarse-to-fine voxel mapping and then use a novel voxel map organized by a Hash table and octrees to build and update the map efficiently. We apply the proposed voxel map to an iterated extended Kalman filter and construct a maximum a posteriori probability problem for pose estimation. Experiments on the open KITTI dataset show the high accuracy and efficiency of our method compared to other state-of-the-art methods. Experiments on indoor and unstructured outdoor environments with solid-state LiDAR and non-repetitive scanning LiDAR further verify the adaptability of our mapping method to different environments and LiDAR scanning patterns (see our attached video(1)). Our codes and dataset are open-sourced on Github(2)
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
University Grants Committee of Hong Kong General Research Fund[17206421] ; SUSTech startup Fund[Y01966105]
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:000838455200025
出版者
EI入藏号
20222812349124
EI主题词
HTTP ; Indoor positioning systems ; Kalman filters ; Optical radar ; Probability distributions
EI分类号
Surveying:405.3 ; Radar Systems and Equipment:716.2 ; Optical Devices and Systems:741.3 ; Probability Theory:922.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9813516
引用统计
被引频次[WOS]:44
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/350229
专题工学院_系统设计与智能制造学院
作者单位
1.Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
2.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, People's Republic of China
推荐引用方式
GB/T 7714
Chongjian Yuan,Wei Xu,Xiyuan Liu,et al. Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry[J]. IEEE Robotics and Automation Letters,2022,PP(99):1-8.
APA
Chongjian Yuan,Wei Xu,Xiyuan Liu,Xiaoping Hong,&Fu Zhang.(2022).Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry.IEEE Robotics and Automation Letters,PP(99),1-8.
MLA
Chongjian Yuan,et al."Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry".IEEE Robotics and Automation Letters PP.99(2022):1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chongjian Yuan]的文章
[Wei Xu]的文章
[Xiyuan Liu]的文章
百度学术
百度学术中相似的文章
[Chongjian Yuan]的文章
[Wei Xu]的文章
[Xiyuan Liu]的文章
必应学术
必应学术中相似的文章
[Chongjian Yuan]的文章
[Wei Xu]的文章
[Xiyuan Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。