题名 | Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 2377-3774
|
卷号 | PP期号:99页码:1-8 |
摘要 | This letter proposes an efficient and probabilistic adaptive voxel mapping method for LiDAR odometry. The map is a collection of voxels; each contains one plane feature that enables the probabilistic representation of the environment and accurate registration of a new LiDAR scan. We further analyze the need for coarse-to-fine voxel mapping and then use a novel voxel map organized by a Hash table and octrees to build and update the map efficiently. We apply the proposed voxel map to an iterated extended Kalman filter and construct a maximum a posteriori probability problem for pose estimation. Experiments on the open KITTI dataset show the high accuracy and efficiency of our method compared to other state-of-the-art methods. Experiments on indoor and unstructured outdoor environments with solid-state LiDAR and non-repetitive scanning LiDAR further verify the adaptability of our mapping method to different environments and LiDAR scanning patterns (see our attached video(1)). Our codes and dataset are open-sourced on Github(2) |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | University Grants Committee of Hong Kong General Research Fund[17206421]
; SUSTech startup Fund[Y01966105]
|
WOS研究方向 | Robotics
|
WOS类目 | Robotics
|
WOS记录号 | WOS:000838455200025
|
出版者 | |
EI入藏号 | 20222812349124
|
EI主题词 | HTTP
; Indoor positioning systems
; Kalman filters
; Optical radar
; Probability distributions
|
EI分类号 | Surveying:405.3
; Radar Systems and Equipment:716.2
; Optical Devices and Systems:741.3
; Probability Theory:922.1
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9813516 |
引用统计 |
被引频次[WOS]:44
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/350229 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China 2.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, People's Republic of China |
推荐引用方式 GB/T 7714 |
Chongjian Yuan,Wei Xu,Xiyuan Liu,et al. Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry[J]. IEEE Robotics and Automation Letters,2022,PP(99):1-8.
|
APA |
Chongjian Yuan,Wei Xu,Xiyuan Liu,Xiaoping Hong,&Fu Zhang.(2022).Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry.IEEE Robotics and Automation Letters,PP(99),1-8.
|
MLA |
Chongjian Yuan,et al."Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry".IEEE Robotics and Automation Letters PP.99(2022):1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论