[1] Thomas J, Qidwai M, Matic P, et al. Multifunctional approaches for structure-plus-power concepts[C/OL]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: American Institute of Aeronautics and Astronautics, 2002
[2022–03–09]. https://arc.aiaa.org/doi/10.2514/6.2002-1239. DOI:10.2514/6.2002-1239.
[2] Thomas J P, Keennon M T, DuPasquier A, et al. Multifunctional structure-battery materials for enhanced performance in small unmanned air vehicles[C/OL]. American Society of Mechanical Engineers Digital Collection, 2008: 289–292
[2022–03–09]. https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2003/3719X/289/301825. DOI:10.1115/IMECE2003-41512.
[3] Wright P V. Electrical conductivity in ionic complexes of poly(ethylene oxide)[J]. British Polymer Journal, 1975, 7(5): 319–327. DOI:10.1002/pi.4980070505.
[4] Armand M, Chabagno J, Duclot M. Fast ion transport in solids[J]. Electrodes and Electrolytes, 1979, 131.
[5] Yoshino A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798–5800. DOI:10.1002/anie.201105006.
[6] Johansson P. First principles modelling of amorphous polymer electrolytes: Li+–peo, Li+–pei, and Li+–pes complexes[J]. Polymer, 2001, 42(9): 4367–4373. DOI:10.1016/S0032-3861(00)00731-X.
[7] Linert W, Camard A, Armand M, et al. Anions of low lewis basicity for ionic solid state electrolytes[J]. Coordination Chemistry Reviews, 2002, 226(1): 137–141. DOI:10.1016/S0010-8545(01)00416-7.
[8] Åvall G, Mindemark J, Brandell D, et al. Sodium-ion battery electrolytes: modeling and simulations[J]. Advanced Energy Materials, 2018, 8(17): 1703036. DOI:10.1002/aenm.201703036.
[9] Armand M. The history of polymer electrolytes[J]. Solid State Ionics, 1994, 69(3): 309–319. DOI:10.1016/0167-2738(94)90419-7.
[10] Anonymous. Novel high salt content polymer electrolytes based on high tg polymers[J]. Electrochimica Acta, 2000, 45(8–9): 1249–1254. DOI:10.1016/S0013-4686(99)00328-X.
[11] Forsyth M, Sun J, Macfarlane D R, et al. Compositional dependence of free volume in pan/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341–350. DOI:10.1002/(SICI)1099-0488(20000115)38:2<341::AID-POLB6>3.0.CO;2-S.
[12] Zhang B, Tan R, Yang L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Materials, 2018, 10: 139–159. DOI:10.1016/j.ensm.2017.08.015.
[13] Berthier C, Gorecki W, Minier M, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11(1): 91–95. DOI:10.1016/0167-2738(83)90068-1.
[14] De Gennes P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. The Journal of Chemical Physics, 1971, 55(2): 572–579. DOI:10.1063/1.1675789.
[15] Druger S D, Nitzan A, Ratner M A. Dynamic bond percolation theory: a microscopic model for diffusion in dynamically disordered systems. i. definition and one‐dimensional case[J]. The Journal of Chemical Physics, 1983, 79(6): 3133–3142. DOI:10.1063/1.446144.
[16] Devaux D, Bouchet R, Glé D, et al. Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight and end groups[J]. Solid State Ionics, 2012, 227: 119–127. DOI:10.1016/j.ssi.2012.09.020.
[17] Walden P. Über organische lösungs- und ionisierungsmittel: ii . teil messungen der elektrischen leitfähigkeit[J]. Zeitschrift für Physikalische Chemie, 1906, 54U(1): 129–230. DOI:10.1515/zpch-1906-5408.
[18] Wang Y, Fan F, Agapov A L, et al. Design of superionic polymers—new insights from walden plot analysis[J]. Solid State Ionics, 2014, 262: 782–784. DOI:10.1016/j.ssi.2013.09.026.
[19] Tominaga Y, Yamazaki K. Fast li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with tio 2 nanoparticles[J]. Chemical Communications, 2014, 50(34): 4448–4450. DOI:10.1039/C3CC49588D.
[20] Mishra R, Baskaran N, Ramakrishnan P A, et al. Lithium ion conduction in extreme polymer in salt regime[J]. Solid State Ionics, 1998, 112(3): 261–273. DOI:10.1016/S0167-2738(98)00209-4.
[21] Rosenwinkel M P, Andersson R, Mindemark J, et al. Coordination effects in polymer electrolytes: fast Li+ transport by weak ion binding[J]. The Journal of Physical Chemistry C, 2020, 124(43): 23588–23596. DOI:10.1021/acs.jpcc.0c08369.
[22] Fauteux D, Massucco A, McLin M, et al. Lithium polymer electrolyte rechargeable battery[J]. Electrochimica Acta, 1995, 40(13): 2185–2190. DOI:10.1016/0013-4686(95)00161-7.
[23] Sequeira C A C, Santos D M F. 1 - introduction to polymer electrolyte materials[M/OL]. Sequeira C, Santos D, eds.//Polymer Electrolytes. Woodhead Publishing, 2010: 3–61
[2022–03–09]. https://www.sciencedirect.com/science/article/pii/B9781845697723500017. DOI:10.1533/9781845699772.1.3.
[24] Huq R, Koksbang R, Tonder P E, et al. Effect of plasticizers on the properties of new ambient temperature polymer electrolyte[J]. Electrochimica Acta, 1992, 37(9): 1681–1684. DOI:10.1016/0013-4686(92)80137-B.
[25] Ahmad S, Ahmad S, Agnihotry S A. Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies[J]. Journal of Power Sources, 2005, 140(1): 151–156. DOI:10.1016/j.jpowsour.2004.08.002.
[26] Ihrner N, Johannisson W, Sieland F, et al. Structural lithium ion battery electrolytes via reaction induced phase-separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25652–25659.
[27] Schneider L M, Ihrner N, Zenkert D, et al. Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries[J/OL]. ACS Applied Energy Materials, 2019
[2021–03–13]. https://pubs.acs.org/doi/full/10.1021/acsaem.9b00563. DOI:10.1021/acsaem.9b00563.
[28] Ladpli P, Nardari R, Kopsaftopoulos F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 517–529. DOI:10.1016/j.jpowsour.2018.12.051.
[29] Pereira T, Guo Z, Nieh S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Composites Science and Technology, 2008, 68(7–8): 1935–1941. DOI:10.1016/j.compscitech.2008.02.019.
[30] Shirshova N, Qian H, Shaffer M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 96–107. DOI:10.1016/j.compositesa.2012.10.007.
[31] Asp L E, Greenhalgh E S. Structural power composites[J]. Composites Science and Technology, 2014, 101: 41–61. DOI:10.1016/j.compscitech.2014.06.020.
[32] Thomas J P, Qidwai M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia, 2004, 52(8): 2155–2164. DOI:10.1016/j.actamat.2004.01.007.
[33] Thomas J P, Qidwai M A. The design and application of multifunctional structure-battery materials systems[J]. JOM, 2005, 57(3): 18–24. DOI:10.1007/s11837-005-0228-5.
[34] Pereira T, Zhanhu Guo, Nieh S, et al. Energy storage structural composites: a review[J]. Journal of Composite Materials, 2009, 43(5): 549–560. DOI:10.1177/0021998308097682.
[35] Pereira T, Scaffaro R, Guo Z, et al. Performance of thin-film lithium energy cells under uniaxial pressure[J]. Advanced Engineering Materials, 2008, 10(4): 393–399. DOI:10.1002/adem.200700214.
[36] Pereira T, Scaffaro R, Nieh S, et al. The performance of thin-film li-ion batteries under flexural deflection[J]. Journal of Micromechanics and Microengineering, 2006, 16(12): 2714–2721. DOI:10.1088/0960-1317/16/12/026.
[37] Roberts S C, Aglietti G S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries[J]. Acta Astronautica, 2010, 67(3): 424–439. DOI:10.1016/j.actaastro.2010.03.004.
[38] Roberts S C, Aglietti G S. Multifunctional power structures for spacecraft applications[C/OL]//57th International Astronautical Congress. Valencia, Spain: American Institute of Aeronautics and Astronautics, 2006
[2022–03–10]. https://arc.aiaa.org/doi/10.2514/6.IAC-06-C2.5.01. DOI:10.2514/6.IAC-06-C2.5.01.
[39] Galos J, Khatibi A A, Mouritz A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures, 2019, 220: 677–686. DOI:10.1016/j.compstruct.2019.04.013.
[40] Galos J, Best A S, Mouritz A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design, 2020, 185: 108228. DOI:10.1016/j.matdes.2019.108228.
[41] Attar P, Galos J, Best A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures, 2020, 237: 111937. DOI:10.1016/j.compstruct.2020.111937.
[42] Pillot C. The rechargeable battery market and main trends 2011-2020[J]. 2018: 34. .
[43] Capovilla G, Cestino E, Reyneri L M, et al. Modular multifunctional composite structure for cubesat applications: preliminary design and structural analysis: 2[J]. Aerospace, 2020, 7(2): 17. DOI:10.3390/aerospace7020017.
[44] Snyder J F, Carter R H, Wetzel E D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries[J]. Chemistry of Materials, 2007, 19(15): 3793–3801. DOI:10.1021/cm070213o.
[45] Liu P, Sherman E, Jacobsen A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources, 2009, 189(1): 646–650. DOI:10.1016/j.jpowsour.2008.09.082.
[46] Ekstedt S, Wysocki M, Asp L E. Structural batteries made from fibre reinforced composites[J]. Plastics, Rubber and Composites, 2010, 39(3–5): 148–150. DOI:10.1179/174328910X12647080902259.
[47] Kjell M H, Zavalis T G, Behm M, et al. Electrochemical characterization of lithium intercalation processes of pan-based carbon fibers in a microelectrode system[J]. Journal of The Electrochemical Society, 2013, 160(9): A1473. DOI:10.1149/2.054309jes.
[48] Snyder J F, Wong E L, Hubbard C W. Evaluation of commercially available carbon fibers, fabrics, and papers for potential use in multifunctional energy storage applications[J]. Journal of The Electrochemical Society, 2009, 156(3): A215. DOI:10.1149/1.3065070.
[49] Fredi G, Jeschke S, Boulaoued A, et al. Graphitic microstructure and performance of carbon fibre li-ion structural battery electrodes[J]. Multifunctional Materials, 2018, 1(1): 015003. DOI:10.1088/2399-7532/aab707.
[50] Kjell M H, Jacques E, Zenkert D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(12): A1455. DOI:10.1149/2.053112jes.
[51] Jacques E, H. Kjell M, Zenkert D, et al. Piezo-electrochemical effect in lithium-intercalated carbon fibres[J]. Electrochemistry Communications, 2013, 35: 65–67. DOI:10.1016/j.elecom.2013.07.040.
[52] Jacques E, Lindbergh G, Zenkert D, et al. Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13898–13904. DOI:10.1021/acsami.5b02585.
[53] Genieser R, Loveridge M, Bhagat R. Practical high temperature (80 °c) storage study of industrially manufactured li-ion batteries with varying electrolytes[J]. Journal of Power Sources, 2018, 386: 85–95. DOI:10.1016/j.jpowsour.2018.03.050.
[54] Snyder J F, Wetzel E D, Watson C M. Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers[J]. Polymer, 2009, 50(20): 4906–4916. DOI:10.1016/j.polymer.2009.07.050.
[55] Willgert M, Kjell M H, Jacques E, et al. Photoinduced free radical polymerization of thermoset lithium battery electrolytes[J]. European Polymer Journal, 2011, 47(12): 2372–2378. DOI:10.1016/j.eurpolymj.2011.09.018.
[56] Willgert M, Kjell M H, Lindbergh G, et al. New structural lithium battery electrolytes using thiol–ene chemistry[J]. Solid State Ionics, 2013, 236: 22–29. DOI:10.1016/j.ssi.2013.01.019.
[57] Willgert M, Leijonmarck S, Lindbergh G, et al. Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications[J]. Journal of Materials Chemistry A, 2014, 2(33): 13556–13564. DOI:10/f24hhf.
[58] Johannisson W, Ihrner N, Zenkert D, et al. Multifunctional performance of a carbon fiber ud lamina electrode for structural batteries[J]. Composites Science and Technology, 2018, 168: 81–87. DOI:10/gh856t.
[59] Leijonmarck S, Carlson T, Lindbergh G, et al. Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries[J]. Composites Science and Technology, 2013, 89: 149–157. DOI:10.1016/j.compscitech.2013.09.026.
[60] Kim H, Kim G, Ji W, et al. Random vibration fatigue analysis of a multi-material battery pack structure for an electric vehicle[J]. Functional Composites and Structures, 2021, 3(2): 025006. DOI:10.1088/2631-6331/ac0416.
[61] Hollinger A S, McAnallen D R, Brockett M T, et al. Cylindrical lithium-ion structural batteries for drones[J]. International Journal of Energy Research, 2020, 44(1): 560–566. DOI:10.1002/er.4937.
[62] Pyo J, Park H-W, Jang M-S, et al. Tubular laminated composite structural battery[J]. Composites Science and Technology, 2021, 208: 108646. DOI:10.1016/j.compscitech.2021.108646.
[63] Schulze M W, McIntosh L D, Hillmyer M A, et al. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation[J]. Nano Letters, 2014, 14(1): 122–126. DOI:10.1021/nl4034818.
[64] Ek G, Jeschull F, Bowden T, et al. Li-ion batteries using electrolytes based on mixtures of poly(vinyl alcohol) and lithium bis(triflouromethane) sulfonamide salt[J]. Electrochimica Acta, 2017, 246: 208–212. DOI:10.1016/j.electacta.2017.05.127.
[65] MacFarlane D R, Zhou F, Forsyth M. Ion conductivity in amorphous polymer/salt mixtures[J]. Solid State Ionics, 1998, 113–115: 193–197. DOI:10.1016/S0167-2738(98)00373-7.
[66] Voigt N, Van Wüllen L. The mechanism of ionic transport in pan-based solid polymer electrolytes[J]. Solid State Ionics, 2012, 208: 8–16. DOI:10.1016/j.ssi.2011.11.031.
[67] Paillard E, Zhou Q, Henderson W A, et al. Electrochemical and physicochemical properties of py14fsi -based electrolytes with lifsi[J]. Journal of The Electrochemical Society, 2009, 156(11): A891. DOI:10.1149/1.3208048.
[68] Marchiori C F N, Carvalho R P, Ebadi M, et al. Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of li-ion salts[J]. Chemistry of Materials, 2020, 32(17): 7237–7246. DOI:10.1021/acs.chemmater.0c01489.
[69] Qiu J, Liu X, Chen R, et al. Enabling stable cycling of 4.2 v high-voltage all-solid-state batteries with peo-based solid electrolyte[J]. Advanced Functional Materials, 2020, 30(22): 1909392. DOI:10.1002/adfm.201909392.
[70] Sun B, Mindemark J, Edström K, et al. Realization of high performance polycarbonate-based li polymer batteries[J]. Electrochemistry Communications, 2015, 52: 71–74. DOI:10.1016/j.elecom.2015.01.020.
[71] Wang Q, Liu X, Cui Z, et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries[J]. Electrochimica Acta, 2020, 337: 135843. DOI:10.1016/j.electacta.2020.135843.
[72] Palacín M R, De Guibert A. Why do batteries fail?[J]. Science, 2016, 351(6273): 1253292. DOI:10.1126/science.1253292.
[73] Lopez J, Pei A, Oh J Y, et al. Effects of polymer coatings on electrodeposited lithium metal[J]. Journal of the American Chemical Society, 2018, 140(37): 11735–11744. DOI:10.1021/jacs.8b06047.
[74] Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of The Electrochemical Society, 2005, 152(2): A396. DOI:10.1149/1.1850854.
[75] Khurana R, Schaefer J L, Archer L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395–7402. DOI:10.1021/ja502133j.
[76] Nair J R, Shaji I, Ehteshami N, et al. Solid polymer electrolytes for lithium metal battery via thermally induced cationic ring-opening polymerization (crop) with an insight into the reaction mechanism[J]. Chemistry of Materials, 2019, 31(9): 3118–3133. DOI:10.1021/acs.chemmater.8b04172.
[77] Zhou W, Wang S, Li Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385–9388. DOI:10.1021/jacs.6b05341.
[78] Kobayashi Y, Mita Y, Seki S, et al. Comparative study of lithium secondary batteries using nonvolatile safety electrolytes[J]. Journal of The Electrochemical Society, 2007, 154(7): A677. DOI:10.1149/1.2736646.
[79] Bergfelt A, J. Lacey M, Hedman J, et al. ε-caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization[J]. RSC Advances, 2018, 8(30): 16716–16725. DOI:10.1039/C8RA00377G.
[80] Bergfelt A, Hernández G, Mogensen R, et al. Mechanically robust yet highly conductive diblock copolymer solid polymer electrolyte for ambient temperature battery applications[J]. ACS Applied Polymer Materials, 2020, 2(2): 939–948. DOI:10.1021/acsapm.9b01142.
[81] He W, Cui Z, Liu X, et al. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries[J]. Electrochimica Acta, 2017, 225: 151–159. DOI:10.1016/j.electacta.2016.12.113.
[82] Hu P, Chai J, Duan Y, et al. Progress in nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10070–10083. DOI:10.1039/C6TA02907H.
[83] Gasco F, Feraboli P. Manufacturability of composite laminates with integrated thin film li-ion batteries[J]. Journal of composite materials, 2014, 48(8): 899–910. DOI:10.1177/0021998313480195.
修改评论