中文版 | English
题名

用于复合材料结构电池的双连续相固态高分子电解质

其他题名
BI-CONTINOUS PHASE SOLID POLYMER ELECTROLYTE FOR COMPOSITE STRUCTURAL BATTERIES
姓名
姓名拼音
CHEN Yifan
学号
12032681
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
周利民
导师单位
系统设计与智能制造学院
论文答辩日期
2022-05-09
论文提交日期
2022-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

锂离子电池拥有高能量密度、高功率密度、快速充电和长使用寿命等优秀性能,推动了许多领域尤其是电动交通工具和便携电子设备的革新。近十年来,先进的储能组件驱动着现代交通领域的发展,从电动汽车到高空卫星,如今,这一领域的主要研究目标依然是更轻便、更环保、更加可持续。在系统中使用同时能够承担多个主要功能的材料有望同时推进这些目标。复合材料结构电池——在储存电化学能量的同时承担机械载荷,就是实现材料和系统的多功能的一个重要手段。在交通电气化的当下,结构电池有可能在系统层面减轻重量并提高电动汽车或电动飞机的效率。 本研究展示了一种复合材料结构电池设计,这一设计中研发使用了一种新型双连续相固态高分子电解质,其由包含锂盐的小分子溶液相和交联高分子固态支持相组成。研究探索了该电解质中高分子单体和固液相比例对电解质性能的影响。通过动态热机械分析、傅里叶红外光谱、扫描电子显微镜和差示扫描量热的方法,研究了该电解质的微观结构和聚合机理。 将该电解质组装为不锈钢阻断电池,使用电化学阻抗谱测量其离子电导率; 组装为对锂电池,使用线性扫描伏安法测量其相对 Li/Li+ 的电化学稳定窗口,并基于该电解质组装了锂-磷酸铁锂电池以研究其在电池应用中的电化学性能,最终确定了具有获得了良好电化学和机械性能的电解质配方。使用这种电解质的固态 LiFePO4/Li 纽扣电池显示出优异的电化学性能,室温下 0.1 C (1 C = 170 mAh/g) 的最大可逆容量为 157 mAh/g 。 使用基于该电解质的组装的柔性薄膜固态锂离子电池单元,可以直接与纤维预浸料一起使用传统的真空袋成型技术制造,易于加工。预浸料层压板作为嵌入式电池单元的封装,使整体具有出色的机械性能。本研究中采用一步成型制造了平板形、弧面和圆管复合材料结构电池,同时将圆管结构电池作为系统的储能组件和结构框架,研究了其在载荷下的机械和电化学性能。当达到约 53.6 MPa 的压缩强度时,结构电池圆管仍然可以提供能量。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-7
参考文献列表

[1] Thomas J, Qidwai M, Matic P, et al. Multifunctional approaches for structure-plus-power concepts[C/OL]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado: American Institute of Aeronautics and Astronautics, 2002

[2022–03–09]. https://arc.aiaa.org/doi/10.2514/6.2002-1239. DOI:10.2514/6.2002-1239.

[2] Thomas J P, Keennon M T, DuPasquier A, et al. Multifunctional structure-battery materials for enhanced performance in small unmanned air vehicles[C/OL]. American Society of Mechanical Engineers Digital Collection, 2008: 289–292

[2022–03–09]. https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2003/3719X/289/301825. DOI:10.1115/IMECE2003-41512.

[3] Wright P V. Electrical conductivity in ionic complexes of poly(ethylene oxide)[J]. British Polymer Journal, 1975, 7(5): 319–327. DOI:10.1002/pi.4980070505.

[4] Armand M, Chabagno J, Duclot M. Fast ion transport in solids[J]. Electrodes and Electrolytes, 1979, 131.

[5] Yoshino A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798–5800. DOI:10.1002/anie.201105006.

[6] Johansson P. First principles modelling of amorphous polymer electrolytes: Li+–peo, Li+–pei, and Li+–pes complexes[J]. Polymer, 2001, 42(9): 4367–4373. DOI:10.1016/S0032-3861(00)00731-X.

[7] Linert W, Camard A, Armand M, et al. Anions of low lewis basicity for ionic solid state electrolytes[J]. Coordination Chemistry Reviews, 2002, 226(1): 137–141. DOI:10.1016/S0010-8545(01)00416-7.

[8] Åvall G, Mindemark J, Brandell D, et al. Sodium-ion battery electrolytes: modeling and simulations[J]. Advanced Energy Materials, 2018, 8(17): 1703036. DOI:10.1002/aenm.201703036.

[9] Armand M. The history of polymer electrolytes[J]. Solid State Ionics, 1994, 69(3): 309–319. DOI:10.1016/0167-2738(94)90419-7.

[10] Anonymous. Novel high salt content polymer electrolytes based on high tg polymers[J]. Electrochimica Acta, 2000, 45(8–9): 1249–1254. DOI:10.1016/S0013-4686(99)00328-X.

[11] Forsyth M, Sun J, Macfarlane D R, et al. Compositional dependence of free volume in pan/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(2): 341–350. DOI:10.1002/(SICI)1099-0488(20000115)38:2<341::AID-POLB6>3.0.CO;2-S.

[12] Zhang B, Tan R, Yang L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Materials, 2018, 10: 139–159. DOI:10.1016/j.ensm.2017.08.015.

[13] Berthier C, Gorecki W, Minier M, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11(1): 91–95. DOI:10.1016/0167-2738(83)90068-1.

[14] De Gennes P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. The Journal of Chemical Physics, 1971, 55(2): 572–579. DOI:10.1063/1.1675789.

[15] Druger S D, Nitzan A, Ratner M A. Dynamic bond percolation theory: a microscopic model for diffusion in dynamically disordered systems. i. definition and one‐dimensional case[J]. The Journal of Chemical Physics, 1983, 79(6): 3133–3142. DOI:10.1063/1.446144.

[16] Devaux D, Bouchet R, Glé D, et al. Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight and end groups[J]. Solid State Ionics, 2012, 227: 119–127. DOI:10.1016/j.ssi.2012.09.020.

[17] Walden P. Über organische lösungs- und ionisierungsmittel: ii . teil messungen der elektrischen leitfähigkeit[J]. Zeitschrift für Physikalische Chemie, 1906, 54U(1): 129–230. DOI:10.1515/zpch-1906-5408.

[18] Wang Y, Fan F, Agapov A L, et al. Design of superionic polymers—new insights from walden plot analysis[J]. Solid State Ionics, 2014, 262: 782–784. DOI:10.1016/j.ssi.2013.09.026.

[19] Tominaga Y, Yamazaki K. Fast li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with tio 2 nanoparticles[J]. Chemical Communications, 2014, 50(34): 4448–4450. DOI:10.1039/C3CC49588D.

[20] Mishra R, Baskaran N, Ramakrishnan P A, et al. Lithium ion conduction in extreme polymer in salt regime[J]. Solid State Ionics, 1998, 112(3): 261–273. DOI:10.1016/S0167-2738(98)00209-4.

[21] Rosenwinkel M P, Andersson R, Mindemark J, et al. Coordination effects in polymer electrolytes: fast Li+ transport by weak ion binding[J]. The Journal of Physical Chemistry C, 2020, 124(43): 23588–23596. DOI:10.1021/acs.jpcc.0c08369.

[22] Fauteux D, Massucco A, McLin M, et al. Lithium polymer electrolyte rechargeable battery[J]. Electrochimica Acta, 1995, 40(13): 2185–2190. DOI:10.1016/0013-4686(95)00161-7.

[23] Sequeira C A C, Santos D M F. 1 - introduction to polymer electrolyte materials[M/OL]. Sequeira C, Santos D, eds.//Polymer Electrolytes. Woodhead Publishing, 2010: 3–61

[2022–03–09]. https://www.sciencedirect.com/science/article/pii/B9781845697723500017. DOI:10.1533/9781845699772.1.3.

[24] Huq R, Koksbang R, Tonder P E, et al. Effect of plasticizers on the properties of new ambient temperature polymer electrolyte[J]. Electrochimica Acta, 1992, 37(9): 1681–1684. DOI:10.1016/0013-4686(92)80137-B.

[25] Ahmad S, Ahmad S, Agnihotry S A. Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies[J]. Journal of Power Sources, 2005, 140(1): 151–156. DOI:10.1016/j.jpowsour.2004.08.002.

[26] Ihrner N, Johannisson W, Sieland F, et al. Structural lithium ion battery electrolytes via reaction induced phase-separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25652–25659.

[27] Schneider L M, Ihrner N, Zenkert D, et al. Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries[J/OL]. ACS Applied Energy Materials, 2019

[2021–03–13]. https://pubs.acs.org/doi/full/10.1021/acsaem.9b00563. DOI:10.1021/acsaem.9b00563.

[28] Ladpli P, Nardari R, Kopsaftopoulos F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 517–529. DOI:10.1016/j.jpowsour.2018.12.051.

[29] Pereira T, Guo Z, Nieh S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Composites Science and Technology, 2008, 68(7–8): 1935–1941. DOI:10.1016/j.compscitech.2008.02.019.

[30] Shirshova N, Qian H, Shaffer M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 96–107. DOI:10.1016/j.compositesa.2012.10.007.

[31] Asp L E, Greenhalgh E S. Structural power composites[J]. Composites Science and Technology, 2014, 101: 41–61. DOI:10.1016/j.compscitech.2014.06.020.

[32] Thomas J P, Qidwai M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia, 2004, 52(8): 2155–2164. DOI:10.1016/j.actamat.2004.01.007.

[33] Thomas J P, Qidwai M A. The design and application of multifunctional structure-battery materials systems[J]. JOM, 2005, 57(3): 18–24. DOI:10.1007/s11837-005-0228-5.

[34] Pereira T, Zhanhu Guo, Nieh S, et al. Energy storage structural composites: a review[J]. Journal of Composite Materials, 2009, 43(5): 549–560. DOI:10.1177/0021998308097682.

[35] Pereira T, Scaffaro R, Guo Z, et al. Performance of thin-film lithium energy cells under uniaxial pressure[J]. Advanced Engineering Materials, 2008, 10(4): 393–399. DOI:10.1002/adem.200700214.

[36] Pereira T, Scaffaro R, Nieh S, et al. The performance of thin-film li-ion batteries under flexural deflection[J]. Journal of Micromechanics and Microengineering, 2006, 16(12): 2714–2721. DOI:10.1088/0960-1317/16/12/026.

[37] Roberts S C, Aglietti G S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries[J]. Acta Astronautica, 2010, 67(3): 424–439. DOI:10.1016/j.actaastro.2010.03.004.

[38] Roberts S C, Aglietti G S. Multifunctional power structures for spacecraft applications[C/OL]//57th International Astronautical Congress. Valencia, Spain: American Institute of Aeronautics and Astronautics, 2006

[2022–03–10]. https://arc.aiaa.org/doi/10.2514/6.IAC-06-C2.5.01. DOI:10.2514/6.IAC-06-C2.5.01.

[39] Galos J, Khatibi A A, Mouritz A P. Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries[J]. Composite Structures, 2019, 220: 677–686. DOI:10.1016/j.compstruct.2019.04.013.

[40] Galos J, Best A S, Mouritz A P. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads[J]. Materials & Design, 2020, 185: 108228. DOI:10.1016/j.matdes.2019.108228.

[41] Attar P, Galos J, Best A S, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries[J]. Composite Structures, 2020, 237: 111937. DOI:10.1016/j.compstruct.2020.111937.

[42] Pillot C. The rechargeable battery market and main trends 2011-2020[J]. 2018: 34. .

[43] Capovilla G, Cestino E, Reyneri L M, et al. Modular multifunctional composite structure for cubesat applications: preliminary design and structural analysis: 2[J]. Aerospace, 2020, 7(2): 17. DOI:10.3390/aerospace7020017.

[44] Snyder J F, Carter R H, Wetzel E D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries[J]. Chemistry of Materials, 2007, 19(15): 3793–3801. DOI:10.1021/cm070213o.

[45] Liu P, Sherman E, Jacobsen A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources, 2009, 189(1): 646–650. DOI:10.1016/j.jpowsour.2008.09.082.

[46] Ekstedt S, Wysocki M, Asp L E. Structural batteries made from fibre reinforced composites[J]. Plastics, Rubber and Composites, 2010, 39(3–5): 148–150. DOI:10.1179/174328910X12647080902259.

[47] Kjell M H, Zavalis T G, Behm M, et al. Electrochemical characterization of lithium intercalation processes of pan-based carbon fibers in a microelectrode system[J]. Journal of The Electrochemical Society, 2013, 160(9): A1473. DOI:10.1149/2.054309jes.

[48] Snyder J F, Wong E L, Hubbard C W. Evaluation of commercially available carbon fibers, fabrics, and papers for potential use in multifunctional energy storage applications[J]. Journal of The Electrochemical Society, 2009, 156(3): A215. DOI:10.1149/1.3065070.

[49] Fredi G, Jeschke S, Boulaoued A, et al. Graphitic microstructure and performance of carbon fibre li-ion structural battery electrodes[J]. Multifunctional Materials, 2018, 1(1): 015003. DOI:10.1088/2399-7532/aab707.

[50] Kjell M H, Jacques E, Zenkert D, et al. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(12): A1455. DOI:10.1149/2.053112jes.

[51] Jacques E, H. Kjell M, Zenkert D, et al. Piezo-electrochemical effect in lithium-intercalated carbon fibres[J]. Electrochemistry Communications, 2013, 35: 65–67. DOI:10.1016/j.elecom.2013.07.040.

[52] Jacques E, Lindbergh G, Zenkert D, et al. Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13898–13904. DOI:10.1021/acsami.5b02585.

[53] Genieser R, Loveridge M, Bhagat R. Practical high temperature (80 °c) storage study of industrially manufactured li-ion batteries with varying electrolytes[J]. Journal of Power Sources, 2018, 386: 85–95. DOI:10.1016/j.jpowsour.2018.03.050.

[54] Snyder J F, Wetzel E D, Watson C M. Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers[J]. Polymer, 2009, 50(20): 4906–4916. DOI:10.1016/j.polymer.2009.07.050.

[55] Willgert M, Kjell M H, Jacques E, et al. Photoinduced free radical polymerization of thermoset lithium battery electrolytes[J]. European Polymer Journal, 2011, 47(12): 2372–2378. DOI:10.1016/j.eurpolymj.2011.09.018.

[56] Willgert M, Kjell M H, Lindbergh G, et al. New structural lithium battery electrolytes using thiol–ene chemistry[J]. Solid State Ionics, 2013, 236: 22–29. DOI:10.1016/j.ssi.2013.01.019.

[57] Willgert M, Leijonmarck S, Lindbergh G, et al. Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications[J]. Journal of Materials Chemistry A, 2014, 2(33): 13556–13564. DOI:10/f24hhf.

[58] Johannisson W, Ihrner N, Zenkert D, et al. Multifunctional performance of a carbon fiber ud lamina electrode for structural batteries[J]. Composites Science and Technology, 2018, 168: 81–87. DOI:10/gh856t.

[59] Leijonmarck S, Carlson T, Lindbergh G, et al. Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries[J]. Composites Science and Technology, 2013, 89: 149–157. DOI:10.1016/j.compscitech.2013.09.026.

[60] Kim H, Kim G, Ji W, et al. Random vibration fatigue analysis of a multi-material battery pack structure for an electric vehicle[J]. Functional Composites and Structures, 2021, 3(2): 025006. DOI:10.1088/2631-6331/ac0416.

[61] Hollinger A S, McAnallen D R, Brockett M T, et al. Cylindrical lithium-ion structural batteries for drones[J]. International Journal of Energy Research, 2020, 44(1): 560–566. DOI:10.1002/er.4937.

[62] Pyo J, Park H-W, Jang M-S, et al. Tubular laminated composite structural battery[J]. Composites Science and Technology, 2021, 208: 108646. DOI:10.1016/j.compscitech.2021.108646.

[63] Schulze M W, McIntosh L D, Hillmyer M A, et al. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation[J]. Nano Letters, 2014, 14(1): 122–126. DOI:10.1021/nl4034818.

[64] Ek G, Jeschull F, Bowden T, et al. Li-ion batteries using electrolytes based on mixtures of poly(vinyl alcohol) and lithium bis(triflouromethane) sulfonamide salt[J]. Electrochimica Acta, 2017, 246: 208–212. DOI:10.1016/j.electacta.2017.05.127.

[65] MacFarlane D R, Zhou F, Forsyth M. Ion conductivity in amorphous polymer/salt mixtures[J]. Solid State Ionics, 1998, 113–115: 193–197. DOI:10.1016/S0167-2738(98)00373-7.

[66] Voigt N, Van Wüllen L. The mechanism of ionic transport in pan-based solid polymer electrolytes[J]. Solid State Ionics, 2012, 208: 8–16. DOI:10.1016/j.ssi.2011.11.031.

[67] Paillard E, Zhou Q, Henderson W A, et al. Electrochemical and physicochemical properties of py14fsi -based electrolytes with lifsi[J]. Journal of The Electrochemical Society, 2009, 156(11): A891. DOI:10.1149/1.3208048.

[68] Marchiori C F N, Carvalho R P, Ebadi M, et al. Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of li-ion salts[J]. Chemistry of Materials, 2020, 32(17): 7237–7246. DOI:10.1021/acs.chemmater.0c01489.

[69] Qiu J, Liu X, Chen R, et al. Enabling stable cycling of 4.2 v high-voltage all-solid-state batteries with peo-based solid electrolyte[J]. Advanced Functional Materials, 2020, 30(22): 1909392. DOI:10.1002/adfm.201909392.

[70] Sun B, Mindemark J, Edström K, et al. Realization of high performance polycarbonate-based li polymer batteries[J]. Electrochemistry Communications, 2015, 52: 71–74. DOI:10.1016/j.elecom.2015.01.020.

[71] Wang Q, Liu X, Cui Z, et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries[J]. Electrochimica Acta, 2020, 337: 135843. DOI:10.1016/j.electacta.2020.135843.

[72] Palacín M R, De Guibert A. Why do batteries fail?[J]. Science, 2016, 351(6273): 1253292. DOI:10.1126/science.1253292.

[73] Lopez J, Pei A, Oh J Y, et al. Effects of polymer coatings on electrodeposited lithium metal[J]. Journal of the American Chemical Society, 2018, 140(37): 11735–11744. DOI:10.1021/jacs.8b06047.

[74] Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of The Electrochemical Society, 2005, 152(2): A396. DOI:10.1149/1.1850854.

[75] Khurana R, Schaefer J L, Archer L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395–7402. DOI:10.1021/ja502133j.

[76] Nair J R, Shaji I, Ehteshami N, et al. Solid polymer electrolytes for lithium metal battery via thermally induced cationic ring-opening polymerization (crop) with an insight into the reaction mechanism[J]. Chemistry of Materials, 2019, 31(9): 3118–3133. DOI:10.1021/acs.chemmater.8b04172.

[77] Zhou W, Wang S, Li Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385–9388. DOI:10.1021/jacs.6b05341.

[78] Kobayashi Y, Mita Y, Seki S, et al. Comparative study of lithium secondary batteries using nonvolatile safety electrolytes[J]. Journal of The Electrochemical Society, 2007, 154(7): A677. DOI:10.1149/1.2736646.

[79] Bergfelt A, J. Lacey M, Hedman J, et al. ε-caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization[J]. RSC Advances, 2018, 8(30): 16716–16725. DOI:10.1039/C8RA00377G.

[80] Bergfelt A, Hernández G, Mogensen R, et al. Mechanically robust yet highly conductive diblock copolymer solid polymer electrolyte for ambient temperature battery applications[J]. ACS Applied Polymer Materials, 2020, 2(2): 939–948. DOI:10.1021/acsapm.9b01142.

[81] He W, Cui Z, Liu X, et al. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries[J]. Electrochimica Acta, 2017, 225: 151–159. DOI:10.1016/j.electacta.2016.12.113.

[82] Hu P, Chai J, Duan Y, et al. Progress in nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10070–10083. DOI:10.1039/C6TA02907H.

[83] Gasco F, Feraboli P. Manufacturability of composite laminates with integrated thin film li-ion batteries[J]. Journal of composite materials, 2014, 48(8): 899–910. DOI:10.1177/0021998313480195.

所在学位评定分委会
系统设计与智能制造学院
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/350232
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
陈逸帆. 用于复合材料结构电池的双连续相固态高分子电解质[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032681-陈逸帆-系统设计与智能(8752KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈逸帆]的文章
百度学术
百度学术中相似的文章
[陈逸帆]的文章
必应学术
必应学术中相似的文章
[陈逸帆]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。