[1] POPAT S. Systematic review of microsatellite instability and colorectal cancer prognosis[J]. Journal of Clinical Oncology, 2005, 23(3): 609-618.
[2] FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012[J]. International Journal of Cancer, 2015, 136(5): E359-E386.
[3] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global Cancer Statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries: global cancer statistics 2018[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[4] HE G, FENG J, ZHANG A, et al. Multifunctional branched nanostraw- electroporation platform for intracellular regulation and monitoring of circulating tumor cells[J]. Nano Letters, 2019, 19(10): 7201-7209.
[5] LU-NAN Q, BANG-DE X, FEI-XIANG W, et al. Circulating tumor cells undergoing emt provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma[J]. Cancer Research, 2018, 78: 4731-4744.
[6] CROMBE A, ALBERTI N, STOECKLE E, et al. Soft tissue masses with myxoid stroma: Can conventional magnetic resonance imaging differentiate benign from malignant tumors[J]. European Journal of Radiology, 2016, 5:1875-1882.
[7] CHAMBERS A F, GROOM A C, MACDONALD I C. Dissemination and growth of cancer cells in metastatic sites[J]. Nature Reviews Cancer, 2002, 2: 63-572.
[8] WEINBERG R A, CHAFFER C L. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024): 1559-1564.
[9] DOME B, TIMAR J, DOBOS J, et al. Identification and clinical significance of circulating endothelial progenitor cells in human non–small cell lung cancer[J]. Cancer Research, 2006, 66(14): 7341-7347.
[10] KLEIN C A. The metastasis cascade[J]. Science, 2008, 321(5897): 1785-1787.
[11] ASHWORTH TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death[J]. The Medical Journal of Australia, 1869, 14, 146-147.
[12] PATERLINI-BRECHOT P, BENALI N L. Circulating tumor cells (CTC) detection: clinical impact and future directions[J]. Cancer Letters, 2007, 253(2): 180-204.
[13] DE RUBIS G, KRISHNAN S R, BEBAWY M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis[J]. Trends in Pharmacological Sciences, 2019, 40(3): 172-186.
[14] GIULIANO M, SHAIKH A, LO HC, ARPINO G, DE PLACIDO S, ZHANG XH, CRISTOFANILLI M, SCHIFF R, TRIVEDI MV. Perspective on circulating tumor cell clusters: why it takes a village to metastasize[J]. Cancer Research, 2018, 78: 845-52.
[15] WOO D, YU M. Circulating tumor cells as “liquid biopsies” to understand cancer metastasis[J]. Translational Research, 2018, 201: 128-135.
[16] KOWALIK A, KOWALEWSKA M, GÓŹDŹ S. Current approaches for avoiding the limitations of circulating tumor cells detection methods—implications for diagnosis and treatment of patients with solid tumors[J]. Translational Research, 2017, 185: 58-84.
[17] RIAZ I B, WANG L, KOHLI M. Liquid biopsy approach in the management of prostate cancer[J]. Translational Research, 2018, 201: 60-70.
[18] LIN E, CAO T, NAGRATH S, et al. Circulating tumor cells: diagnostic and therapeutic applications[J]. Annual Review of Biomedical Engineering, 2018, 20: 329-352.
[19] DAWOOD S, BROGLIO K, VALERO V, et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system[J]. Cancer, 2008, 113(9): 2422-2430.
[20] KRALJ J G, ARYA C, TONA A, et al. A simple packed bed device for antibody labelled rare cell capture from whole blood[J]. Lab on a Chip, 2012, 12(23): 4972-4975.
[21] ZHAO W, CHENG R, JENKINS B D, et al. Label-free ferrohydrodynamic cell separation of circulating tumor cells[J]. Lab on a Chip, 2017, 17(18): 3097-3111.
[22] RIETHDORF S, FRITSCHE H, MÜLLER V, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system[J]. Clinical Cancer Research, 2007, 13(3): 920-928.
[23] NIKBAKHT H, PANDITHARATNA E, MIKAEL L G, et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma[J]. Nature Communications, 2016, 7(1): 1-8.
[24] MÜLLER C, HOLTSCHMIDT J, AUER M, et al. Hematogenous dissemination of glioblastoma multiforme[J]. Science Translational Medicine, 2014, 6(247): 247.
[25] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.
[26] KIM T H, LIM M, PARK J, et al. FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface[J]. Analytical Chemistry, 2017, 89(2): 1155-1162.
[27] LIU Y, LI T, XU M, et al. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples[J]. Lab on a Chip, 2019, 19(1): 68-78.
[28] KIM H, LIM M, KIM J Y, et al. Circulating tumor cells enumerated by a centrifugal microfluidic device as a predictive marker for monitoring ovarian cancer treatment: A pilot study[J]. Diagnostics, 2020, 10(4): 249.
[29] LIN E, RIVERA-BÁEZ L, FOULADDEL S, et al. High-throughput microfluidic labyrinth for the label-free isolation of circulating tumor cells[J]. Cell Systems, 2017, 5(3): 295-304. e4.
[30] MONG J, TAN M H. Size-based enrichment technologies for non-cancerous tumor-derived cells in blood[J]. Trends in Biotechnology, 2018, 36(5): 511-522.
[31] CHEN H. A triplet parallelizing spiral microfluidic chip for continuous separation of tumor cells[J]. Scientific Reports, 2018, 8(1): 1-8.
[32] GUGLIELMI R, LAI Z, RABA K, et al. Technical validation of a new microfluidic device for enrichment of CTCs from large volumes of blood by using buffy coats to mimic diagnostic leukapheresis products[J]. Scientific Reports, 2020, 10(1): 1-9.
[33] ZHOU J, MUKHERJEE P, GAO H, et al. Label-free microfluidic sorting of microparticles[J]. APL Bioengineering, 2019, 3(4): 041504.
[34] HOU H W, WARKIANI M E, KHOO B L, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces[J]. Scientific Reports, 2013, 3(1): 1-8.
[35] WANG S, THOMAS A, LEE E, et al. Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces[J]. Analyst, 2016, 141(7): 2228-2237.
[36] RASTOGI N, SETH P, BHAT R, et al. Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells[J]. Analytica Chimica Acta, 2021, 1159: 338423.
[37] HUR S C, MACH A J, DI CARLO D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2): 022206.
[38] SOLLIER E, GO D E, CHE J, et al. Size-selective collection of circulating tumor cells using vortex technology[J]. Lab on a Chip, 2014, 14(1): 63-77.
[39] WANG S, ZHOU Y, QIN X, et al. Label-free detection of rare circulating tumor cells by image analysis and machine learning[J]. Scientific Reports, 2020, 10(1): 1-10.
[40] YOON J, KIM K, PARK H J, et al. Label-free characterization of white blood cells by measuring 3D refractive index maps[J]. Biomedical Optics Express, 2015, 6(10): 3865-3875.
[41] TSUJI K, LU H, TAN J K, et al. Detection of circulating tumor cells in fluorescence microscopy images based on ANN classifier[J]. Mobile Networks and Applications, 2020, 25(3): 1042-1051.
[42] CHO H Y, HOSSAIN M K, LEE J H, et al. Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging[J]. Biosensors and Bioelectronics, 2018, 102: 372-382.
[43] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects part [J]. Physica, 1942, 9(7): 686-698.
[44] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects part II [J]. Physica, 1942, 9(10): 974-986.
[45] CHANG B J, LIN S H, CHOU L J, et al. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination[J]. Optics Letters, 2011, 36(24):4773-5.
[46] CHOWDHURY S, DHALLA A H, IZATT J. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples[J]. Biomedical Optics Express, 2012, 3(8):1841.
[47] GABOR D. A new microscopic principle [J]. Nature, 1948, 161(4098): 777-778.
[48] TJAHJONO B, GUO J, HAMEIRI Z. High efficiency solar cell structures through the use of laser doping [J]. Physical Review B, 2007: 17(2): 125345.
[49] MEROLA F, MEMMOLO P, MICCIO L, et al. Phase contrast tomography at lab on chip scale by digital holography[J]. Methods, 2018, 136: 108-115.
[50] CACACE T, MEMMOLO P, VILLONE M M, et al. Assembling and rotating erythrocyte aggregates by acoustofluidic pressure enabling full phase-contrast tomography[J]. Lab on a Chip, 2019, 19(18): 3123-3132.
[51] VILLONE M M, MEMMOLO P, MEROLA F, et al. Full-angle tomographic phase microscopy of flowing quasi-spherical cells[J]. Lab on a Chip, 2018, 18(1): 126-131.
[52] MEROLA F, MEMMOLO P, MICCIO L, et al. Tomographic flow cytometry by digital holography[J]. Light: Science & Applications, 2017, 6(4): e16241-e16241.
[53] HAZLE M A, MEHICIC M, GARDINER D J, et al. Practical Raman spectroscopy[J]. Vibrational Spectroscopy, 1990, 1(1): 104-104.
[54] LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8): 936-940.
[55] ANDERSON M S. Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 2000, 76(21): 3130-3132.
[56] WU H, VOLPONI J V, OLIVER A E, et al. In vivo lipidomics using single-cell Raman spectroscopy[J]. Proceedings of the National Academy of Sciences, 2011, 108(9): 3809-3814.
[57] WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy[J]. Current Opinion in Biotechnology, 2016, 41: 34-42.
[58] RAUWEL E, AL-ARAG S, SALEHI H, et al. Assessing cobalt metal nanoparticles uptake by cancer cells using live raman spectroscopy[J]. International Journal of Nanomedicine, 2020, 15: 7051..
[59] LE T T, HUFF T B, CHENG J X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis[J]. BMC Cancer, 2009, 9(1): 1-14.
[60] CHO H Y, HOSSAIN M K, LEE J H, et al. Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging[J]. Biosensors and Bioelectronics, 2018, 102: 372-382.
[61] SCHRAIVOGEL D, KUHN T M, RAUSCHER B, et al. High-speed fluorescence image–enabled cell sorting[J]. Science, 2022, 375(6578): 315-320.
[62] LEE S, KIM S, NAM K, et al. Moxifloxacin based fluorescence imaging of intestinal goblet cells[J]. Biomedical Optics Express, 2020, 11(10): 5814-5825.
[63] ZHANG M, LI M, ZHANG W, et al. Simple and efficient delivery of cell-impermeable organic fluorescent probes into live cells for live-cell superresolution imaging[J]. Light: Science & Applications, 2019, 8(1): 1-11.
[64] PEI H, YU M, DONG D, et al. Phenotype-related drug sensitivity analysis of single CTCs for medicine evaluation[J]. Chemical Science, 2020, 11(33): 8895-8900.
[65] LIAO Z, HAN L, LI Q, et al. Gradient magnetic separation and fluorescent imaging‐based heterogeneous circulating tumor cell subpopulations assay with biomimetic multifunctional nanoprobes[J]. Advanced Functional Materials, 2021, 31(18): 2009937.
[66] WU C, LI P, FAN N, et al. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 44999-45006.
[67] XIA W, LI H, LI Y, et al. In vivo coinstantaneous identification of hepatocellular carcinoma circulating tumor cells by dual-targeting magnetic-fluorescent nanobeads[J]. Nano Letters, 2020, 21(1): 634-641.
[68] HWANG J Y, KIM S T, HAN H S, et al. Optical aptamer probes of fluorescent imaging to rapid monitoring of circulating tumor cell[J]. Sensors, 2016, 16(11): 1909.
[69] WEST G A, BARRETT J J, SIEBERT D R, et al. Photoacoustic spectroscopy[J]. Review of Scientific Instruments, 1983, 54(7): 797-817.
[70] ROSENCWAIG A. Photoacoustic spectroscopy of biological materials[J]. Science, 1973, 181(4100): 657-658.
[71] ROSENCWAIG A. Photoacoustic spectroscopy of solids[J]. Optics Communications, 1973, 7(4): 305-308.
[72] CAI D, WONG T T W, ZHU L, et al. Dual-view photoacoustic microscopy for quantitative cell nuclear imaging[J]. Optics Letters, 2018, 43(20): 4875-4878.
[73] JIN T, QI W, LIANG X, et al. Photoacoustic imaging of brain functions: wide filed‐of‐view functional imaging with high spatiotemporal resolution[J]. Laser & Photonics Reviews, 2021: 2100304.
[74] HENG G, CHEN Q, QIN W, et al. Detachable head-mounted photoacoustic microscope in freely moving mice[J]. Optics Letters, 2021, 46(24): 6055-6058.
[75] XI L, GROBMYER S R, WU L, et al. Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging[J]. Optics Express, 2012, 20(8): 8726-8731.
[76] LIU Y, LIU J, CHEN D, et al. Fluorination enhances NIR‐II fluorescence of polymer dots for quantitative brain tumor imaging[J]. Angewandte Chemie, 2020, 132(47): 21235-21243.
[77] LI T, GUO H, LIU Y, et al. All-in-one photoacoustic theranostics using multi‐functional nanoparticles[J]. Advanced Functional Materials, 2021, 32: 2107624.
[78] WANG J, LI T, NI J S, et al. Photoacoustic force‐guided precise and fast delivery of nanomedicine with boosted therapeutic efficacy[J]. Advanced Science, 2021, 8(16): 2100228.
[79] WANG L, MENG Z, CHEN Y, et al. Engineering magnetic micro/nanorobots for versatile biomedical applications[J]. Advanced Intelligent Systems, 2021, 3(7): 2000267.
[80] LI D, LIU C, YANG Y, et al. Micro-rocket robot with all-optic actuating and tracking in blood[J]. Light: Science & Applications, 2020, 9(1): 1-10.
[81] SHELTON R L, MATTISON S P, APPLEGATE B E. Volumetric imaging of erythrocytes using label‐free multiphoton photoacoustic microscopy[J]. Journal of Biophotonics, 2014, 7(10): 834-840.
[82] ZHANG C, ZHANG Y S, YAO D K, et al. Label-free photoacoustic microscopy of cytochromes[J]. Journal of Biomedical Optics, 2013, 18(2): 020504.
[83] YAO D K, MASLOV K, SHUNG K K, et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA[J]. Optics Letters, 2010, 35(24): 4139-4141.
[84] WICKRAMASINGHE H K, BRAY R C, JIPSON V, et al. Photoacoustics on a microscopic scale[J]. Applied Physics Letters, 1978, 33(11): 923-925.
[85] MASLOV K, ZHANG H F, HU S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.
[86] ZHANG C, MASLOV K, WANG L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 2010, 35(19): 3195-3197.
[87] TAN Z, TANG Z, WU Y, et al. Multimodal subcellular imaging with microcavity photoacoustic transducer[J]. Optics Express, 2011, 19(3): 2426-2431.
[88] TAN Z, LIAO Y, WU Y, et al. Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique[J]. Optics Express, 2012, 20(5): 5802-5808.
[89] ZHANG C, ZHANG Y S, YAO D K, et al. Label-free photoacoustic microscopy of cytochromes[J]. Journal of Biomedical Optics, 2013, 18(2): 020504.
[90] DANIELLI A, MASLOV K I, GARCIA-URIBE A, et al. Label-free photoacoustic nanoscopy[J]. Journal of Biomedical Optics, 2014, 19(8): 086006.
[91] CAI C, NEDOSEKIN D A, MENYAEV Y A, et al. Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo[J]. Analytical Cellular Pathology, 2016, 2016(1): 1-11.
[92] SHI J, WONG T T W, HE Y, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 2019, 13(9): 609-615.
[93] ZHANG Y, CAI X, WANG Y, et al. Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye[J]. Angewandte Chemie, 2011, 123(32): 7497-7501.
[94] ZHANG Y S, YAO J, ZHANG C, et al. Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples[J]. Angewandte Chemie, 2014, 126(31): 8237-8241.
[95] YANG S, YE F, XING D. Intracellular label-free gold nanorods imaging with photoacoustic microscopy[J]. Optics Express, 2012, 20(9): 10370-10375.
[96] ZHANG Y S, WANG Y, WANG L, et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy[J]. Theranostics, 2013, 3(8): 532.
[97] SONG C, JIN T, YAN R, et al. Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels[J]. Lab on a Chip, 2018, 18(9): 1292-1297.
[98] LIU F, JIN T, YAN R, et al. An opto-acousto-fluidic microscopic system with a high spatiotemporal resolution for microfluidic applications[J]. Optics Express, 2019, 27(2): 1425-1432.
[99] GNYAWALI V, STROHM E M, WANG J Z, et al. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis[J]. Scientific Reports, 2019, 9(1): 1-11.
[100] A. G. BELL, Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34):404-426.
[101] K. I. MASLOV, L. V. WANG. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser[J]. Journal of Biomedical Optics, 2008, 13(2):024006.
[102] P. BEARD. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4):602-631.
[103] XU Y, WANG L V, AMBARTSOUMIAN G, et al. Reconstructions in limited‐view thermoacoustic tomography[J]. Medical Physics, 2004, 31(4): 724-733.
[104] XU M, WANG L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4): 041101.
[105] NISHIYAMA M, NAMITA T, KONDO K, et al. Ring-array photoacoustic tomography for imaging human finger vasculature[J]. Journal of Biomedical Optics, 2019, 24(9): 096005.
[106] EGOLF D, BARBER Q, ZEMP R. Single laser-shot super-resolution photoacoustic tomography with fast sparsity-based reconstruction[J]. Photoacoustics, 2021, 22: 100258.
[107] HU S, MASLOV K, WANG L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7): 1134-1136.
[108] WANG L, MASLOV K, YAO J, et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 2011, 36(2): 139-141.
[109] WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
[110] YAO J, WANG L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 2013, 7(5): 758-778.
[111] GUO H, SONG C, XIE H, et al. Photoacoustic endomicroscopy based on a MEMS scanning mirror[J]. Optics Letters, 2017, 42(22): 4615-4618.
[112] QIN W, CHEN Q, XI L. A handheld microscope integrating photoacoustic microscopy and optical coherence tomography[J]. Biomedical Optics Express, 2018, 9(5): 2205-2213.
[113] LIANG Y, JIN L, GUAN B O, et al. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy[J]. Optics Letters, 2017, 42(7): 1452-1455.
[114] WANG Y, LIANG G, LIU F, et al. A long-term cranial window for high-resolution photoacoustic imaging[J]. IEEE Transactions on Biomedical Engineering, 2020, 68(2): 706-711.
[115] QI W, YAO L, JIANG Y, et al. Quantitative Photoacoustic imaging of chlorophyll using a gpu-accelerated finite element method[J]. Communications in Computational Physics, 2020, 28(2): 679-690.
[116] ZHA M, LIN X, NI J S, et al. An ester‐substituted semiconducting polymer with efficient nonradiative decay enhances NIR‐II photoacoustic performance for monitoring of tumor growth[J]. Angewandte Chemie International Edition, 2020, 59(51): 23268-23276.
[117] QI W, LI T, ZHANG C, et al. Light‐controlled precise delivery of nir‐responsive semiconducting polymer nanoparticles with promoted vascular permeability[J]. Advanced Healthcare Materials, 2021, 10(19): 2100569.
[118] WU Y, RUAN H, DONG Z, et al. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking[J]. Analytical Chemistry, 2020, 92(17): 12088-12096.
[119] BEARD P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4): 602-631.
[120] XU K, CLARK C P, POE B L, et al. Isolation of a low number of sperm cells from female DNA in a glass–PDMS–glass microchip via bead-assisted acoustic differential extraction[J]. Analytical Chemistry, 2019, 91(3): 2186-2191.
[121] HAO N, WANG Z, LIU P, et al. Acoustofluidic multimodal diagnostic system for Alzheimer's disease[J]. Biosensors and Bioelectronics, 2022, 196: 113730.
[122] REN L, YANG S, ZHANG P, et al. Standing surface acoustic wave (SSAW)‐based fluorescence‐activated cell sorter[J]. Small, 2018, 14(40): 1801996.
[123] WU M, OZCELIK A, RUFO J, et al. Acoustofluidic separation of cells and particles[J]. Microsystems & nanoengineering, 2019, 5(1): 1-18.
[124] HASEGAWA T, YOSIOKA K. Acoustic‐radiation force on a solid elastic sphere[J]. The Journal of the Acoustical Society of America, 1969, 46(5B): 1139-1143.
[125] KANG P, TIAN Z, YANG S, et al. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects[J]. Lab on a Chip, 2020, 20(5): 987-994.
[126] XIE Y, RUFO J, ZHONG R, et al. Microfluidic isolation and enrichment of nanoparticles[J]. ACS Nano, 2020, 14(12): 16220-16240.
[127] NAMA N, HUANG P H, HUANG T J, et al. Investigation of acoustic streaming patterns around oscillating sharp edges[J]. Lab on a Chip, 2014, 14(15): 2824-2836.
[128] WU Z, JIANG H, ZHANG L, et al. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers[J]. Lab on a Chip, 2019, 19(23): 3922-3930.
[129] LI S, SUN M, HAO C, et al. Chiral CuxCoyS nanoparticles under magnetic field and NIR light to eliminate senescent cells[J]. Angewandte Chemie International Edition, 2020, 59(33): 13915-13922.
[130] ZHANG Z, WANG L, LIU W, et al. Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst[J]. National Science Review, 2021, 8(5): 155.
[131] LI Y, LI Z, HU D, et al. Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits[J]. Chemical Communications, 2021, 57(52): 6420-6423.
[132] LI K, QIN W, DING D, et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing[J]. Scientific Reports, 2013, 3(1): 1-10.
[133] LIU J, FANG X, LIU Z, et al. Expansion microscopy with multifunctional polymer dots[J]. Advanced Materials, 2021, 33(25): 2007854.
修改评论