[1] Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008 Apr;18(4):644-52.
[2] Bensimon A, Heck AJ, Aebersold R. Mass spectrometry-based proteomics and network biology. Annu Rev Biochem. 2012;81:379-405.
[3] Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem. 2011;80:273-99.
[4] Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009 Sep;10(9):617-27.
[5] Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014 May 29;509(7502):582-7.
[6] Malovannaya A, Lanz RB, Jung SY, et al. Analysis of the human endogenous coregulator complexome. Cell. 2011 May 27;145(5):787-99.
[7] Kulak NA, Pichler G, Paron I, et al. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014 Mar;11(3):319-24.
[8] Wang X, Wei X, Thijssen B, et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol. 2012 Jan 15;30(2):159-64.
[9] Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007 Sep;25(9):1035-44.
[10] Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013 Apr 10;113(4):2343-94.
[11] Snider J, Kotlyar M, Saraon P, et al. Fundamentals of protein interaction network mapping. Mol Syst Biol. 2015 Dec 17;11(12):848.
[12] Dezso Z, Oltvai ZN, Barabási AL. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res. 2003 Nov;13(11):2450-4.
[13] Sprinzak E, Altuvia Y, Margalit H. Characterization and prediction of protein-protein interactions within and between complexes. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14718-23.
[14] Tan CSH, Go KD, Bisteau X, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science. 2018 Mar 9;359(6380):1170-1177.
[15] Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245-6.
[16] Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci. 2012 Feb;33(2):109-18.
[17] Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. Plant Mol Biol. 2013 Nov;83(4-5):287-301.
[18] Barrios-Rodiles M, Brown KR, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005 Mar 11;307(5715):1621-5.
[19] Blasche S, Koegl M. Analysis of protein-protein interactions using LUMIER assays. Methods Mol Biol. 2013;1064:17-27.
[20] Taipale M, Tucker G, Peng J, et al. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell. 2014;158(2):434-448.
[21] Kerppola TK. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys. 2008;37:465-487.
[22] Zhang XE, Cui Z, Wang D. Sensing of biomolecular interactions using fluorescence complementing systems in living cells. Biosens Bioelectron. 2016;76:243-250.
[23] Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9(4):789-798.
[24] Miller KE, Kim Y, Huh WK, et al. Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. J Mol Biol. 2015;427(11):2039-2055.
[25] Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics. 2012;12(10):1576-1590.
[26] Choi H, Larsen B, Lin ZY, et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods. 2011;8(1):70-73.
[27] Mellacheruvu D, Wright Z, Couzens AL, et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods. 2013;10(8):730-736.
[28] Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. 2012;196(6):801-810.
[29] Lambert JP, Tucholska M, Go C, et al. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics. 2015;118:81-94.
[30] Martinez Molina D, Nordlund P. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev Pharmacol Toxicol. 2016;56:141-161.
[31] Dai L, Prabhu N, Yu LY, et al. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). Annu Rev Biochem. 2019;88:383-408.
[32] Dai L, Li Z, Chen D, et al. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther. 2020;216:107690.
[33] Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341(6141):84-87.
[34] Savitski MM, Reinhard FB, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346(6205):1255784.
[35] Prabhu N, Dai L, Nordlund P. CETSA in integrated proteomics studies of cellular processes. Curr Opin Chem Biol. 2020;54:54-62.
[36] Franken H, Mathieson T, Childs D, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015;10(10):1567-1593.
[37] Reinhard FB, Eberhard D, Werner T, et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat Methods. 2015;12(12):1129-1131.
[38] Becher I, Werner T, Doce C, et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat Chem Biol. 2016;12(11):908-910.
[39] Kitagawa M, Liao PJ, Lee KH, et al. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nat Commun. 2017;8(1):2200. Published 2017 Dec 19.
[40] Dai L, Zhao T, Bisteau X, et al. Modulation of Protein-Interaction States through the Cell Cycle. Cell. 2018;173(6):1481-1494.e13.
[41] Becher I, Andrés-Pons A, Romanov N, et al. Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell. 2018;173(6):1495-1507.e18.
[42] Türkowsky D, Lohmann P, Mühlenbrink M, et al. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. J Proteomics. 2019;192:10-17.
[43] Mateus A, Bobonis J, Kurzawa N, et al. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol. 2018;14(7):e8242.
[44] Savitski MM, Zinn N, Faelth-Savitski M, et al. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell. 2018;173(1):260-274.e25.
[45] Azimi A, Caramuta S, Seashore-Ludlow B, et al. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol Syst Biol. 2018;14(3):e7858.
[46] Lim YT, Prabhu N, Dai L, et al. An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions. PLoS One. 2018;13(12):e0208273.
[47] Dziekan JM, Yu H, Chen D, et al. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med. 2019;11(473):eaau3174.
[48] Huang JX, Lee G, Cavanaugh KE, et al. High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat Methods. 2019;16(9):894-901.
[49] Hashimoto Y, Sheng X, Murray-Nerger LA, et al. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat Commun. 2020;11(1):806.
[50] Kurzawa N, Mateus A, Savitski MM. Rtpca: an R package for differential thermal proximity coaggregation analysis. Bioinformatics. 2021;37(3):431-433.
[51] Miettinen TP, Peltier J, Härtlova A, et al. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J. 2018;37(10):e98359.
[52] Gaetani M, Sabatier P, Saei AA, et al. Proteome Integral Solubility Alteration: A High-Throughput Proteomics Assay for Target Deconvolution. J Proteome Res. 2019;18(11):4027-4037.
[53] Ball KA, Webb KJ, Coleman SJ, et al. An isothermal shift assay for proteome scale drug-target identification. Commun Biol. 2020;3(1):75.
[54] Kurzawa N, Becher I, Sridharan S, et al. A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles [published correction appears in Nat Commun. 2021 Dec 8;12(1):7267]. Nat Commun. 2020;11(1):5783.
[55] Ruan C, Ning W, Liu Z, et al. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins. ACS Chem Biol. 2022;17(1):252-262.
[56] Brenes A, Hukelmann J, Bensaddek D, Lamond AI. Multibatch TMT Reveals False Positives, Batch Effects and Missing Values. Mol Cell Proteomics. 2019;18(10):1967-1980.
[57] Scherer PC, Ding Y, Liu Z, et al. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proc Natl Acad Sci U S A. 2016;113(13):3503-3508.
[58] Lin H, Zhang X, Liu L, et al. Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proc Natl Acad Sci U S A. 2020;117(8):4117-4124.
[59] Zhang X, Shi S, Su Y, et al. Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem. 2020;295(30):10281-10292.
[60] Lin H, Yan Y, Luo Y, et al. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nat Commun. 2021;12(1):2461.
[61] Martin EW, Holehouse AS. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci. 2020;4(3):307-329.
[62] Chu WT, Wang J. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLoS Comput Biol. 2021;17(3):e1008672.
[63] Oates ME, Romero P, Ishida T, et al. D²P²: database of disordered protein predictions. Nucleic Acids Res. 2013;41(Database issue):D508-D516.
[64] Oates ME, Romero P, Ishida T, et al. D²P²: database of disordered protein predictions. Nucleic Acids Res. 2013;41(Database issue):D508-D516.
[65] Shapiro DM, Ney M, Eghtesadi SA, Chilkoti A. Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications. J Phys Chem B. 2021;125(25):6740-6759.
[66] Bai Y, Liu Y. Illuminating Protein Phase Separation: Reviewing Aggregation-Induced Emission, Fluorescent Molecular Rotor and Solvatochromic Fluorophore Based Probes. Chemistry. 2021;27(59):14564-14576.
[67] Chen W, Wang S, Adhikari S, et al. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling. Anal Chem. 2016;88(9):4864-4871.
[68] Chen W, Adhikari S, Chen L, et al. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. J Chromatogr A. 2017;1498:207-214.
[69] Mateus A, Kurzawa N, Becher I, et al. Thermal proteome profiling for interrogating protein interactions. Mol Syst Biol. 2020;16(3):e9232.
[70] McCracken NA, Peck Justice SA, Wijeratne AB, Mosley AL. Inflect: Optimizing Computational Workflows for Thermal Proteome Profiling Data Analysis. J Proteome Res. 2021;20(4):1874-1888.
[71] Ji H, Lu X, Zheng Z, Sun S, Tan CSH. ProSAP: a GUI software tool for statistical analysis and assessment of thermal stability data [published online ahead of print, 2022 Mar 4]. Brief Bioinform. 2022;bbac057.
[72] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
[73] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140.
[74] McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288-4297.
[75] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
[76] Efstathiou G, Antonakis AN, Pavlopoulos GA, et al. ProteoSign: an end-user online differential proteomics statistical analysis platform. Nucleic Acids Res. 2017;45(W1):W300-W306.
[77] Langley SR, Mayr M. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J Proteomics. 2015;129:83-92.
[78] Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393-1406.
[79] Plubell DL, Wilmarth PA, Zhao Y, et al. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics. 2017;16(5):873-890.
[80] Gatto L, Breckels LM, Naake T, Gibb S. Visualization of proteomics data using R and bioconductor. Proteomics. 2015;15(8):1375-1389.
[81] Giurgiu M, Reinhard J, Brauner B, et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019;47(D1):D559-D563.
[82] Drew K, Wallingford JB, Marcotte EM. hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol Syst Biol. 2021;17(5):e10016.
[83] Havugimana PC, Hart GT, Nepusz T, et al. A census of human soluble protein complexes. Cell. 2012;150(5):1068-1081.
[84] Kristensen AR, Gsponer J, Foster LJ. A high-throughput approach for measuring temporal changes in the interactome. Nat Methods. 2012;9(9):907-909.
[85] Meldal BHM, Bye-A-Jee H, Gajdoš L, et al. Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes. Nucleic Acids Res. 2019;47(D1):D550-D558.
[86] Heusel M, Bludau I, Rosenberger G, et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol Syst Biol. 2019;15(1):e8438.
[87] Fossati A, Li C, Uliana F, et al. PCprophet: a framework for protein complex prediction and differential analysis using proteomic data. Nat Methods. 2021;18(5):520-527.
[88] Prince CC, Jia Z. Detergent quantification in membrane protein samples and its application to crystallization experiments. Amino Acids. 2013;45(6):1293-1302.
[89] Anandan A, Vrielink A. Detergents in Membrane Protein Purification and Crystallisation. Adv Exp Med Biol. 2016;922:13-28.
[90] Wolfe AJ, Parella KJ, Movileanu L. High-Throughput Screening of Protein-Detergent Complexes Using Fluorescence Polarization Spectroscopy. Curr Protoc Protein Sci. 2019;97(1):e96.
[91] Das A, Bysack A, Raghuraman H. Effectiveness of dual-detergent strategy using Triton X-100 in membrane protein purification. Biochem Biophys Res Commun. 2021;578:122-128.
[92] Satta D, Schapira G, Chafey P, et al. Solubilization of plasma membranes in anionic, non-ionic and zwitterionic surfactants for iso-dalt analysis: a critical evaluation. J Chromatogr. 1984;299(1):57-72.
[93] Saouros S, Cecchetti C, Jones A, Cameron AD, Byrne B. Strategies for successful isolation of a eukaryotic transporter. Protein Expr Purif. 2020;166:105522.
[94] Van Vranken JG, Li J, Mitchell DC, et al. Assessing target engagement using proteome-wide solvent shift assays. Elife. 2021;10:e70784.
[95] Neale C, Ghanei H, Holyoake J, et al. Detergent-mediated protein aggregation. Chem Phys Lipids. 2013;169:72-84.
修改评论