中文版 | English
题名

热邻近共聚集方法的计算优化及其在分析细胞内蛋白质复合物动态变化中的应用

其他题名
Computational analysis and optimization of thermal proximity co-aggregation for profiling intracellular protein complex dynamics
姓名
姓名拼音
SUN Siyuan
学号
11930100
学位类型
硕士
学位专业
070302 分析化学
学科门类/专业学位类别
07 理学
导师
Tan Soon Heng
导师单位
化学系
论文答辩日期
2022-05-14
论文提交日期
2022-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

蛋白-蛋白相互作用是生物化学及化学生物学研究中的重要课题之一,而蛋白质复合物作为蛋白质网络的核心,是蛋白质网络发挥生物活性的关键。为了更全面地了解蛋白质复合物的时空特性,热邻近共聚集方法(Thermal Proximity Co-Aggregation, TPCA)于2018年提出,该方法可以在保证细胞完整生命活动的同时,在蛋白质组学层面上分析时间和空间特异的蛋白-蛋白相互作用的动态变化。TPCA方法在过去的几年中得到了广泛的认可及应用,但该方法仍存在较大的优化空间。

为了提高该方法的分析能力,本研究改进了TPCA方法中的计算分析步骤,优化了数据处理和分析工作的流程,并将优化后的方法命名为Slim-TPCA。Slim-TPCA方法从实验设计和数据分析角度提出了一系列改进措施,不仅简化了实验设计,还能消除不同批次质谱数据之间的批次效应,缩短统计计算所需时间,提高了鉴定蛋白质复合物动态变化的灵敏度。Slim-TPCA方法被证明可以用于研究葡萄糖蛋白质组学数据中的蛋白-蛋白相互作用变化,并在研究相分离蛋白的领域展露了潜力。

此外,依托本课题组开发的ProSAP软件,本研究对以往的蛋白质数据库进行了整理,构建了Consensus复合物数据库。该数据库提供了更全面的蛋白质复合物信息,用户在使用ProSAP软件分析Slim-TPCA数据时可以选择该数据库进行更全面的分析。最后,本研究还探究了不同种类去污剂对CETSA和Slim-TPCA方法的影响,证明去污剂有助于CETSA方法和Slim-TPCA方法研究蛋白-配体结合和蛋白-蛋白相互作用。

其他摘要

Protein-protein interactions are one of the most important topics in biochemistry and chemical biology research, and protein complexes, as cores of the protein network, are the keys to the biological activity of protein networks. To gain a more comprehensive understanding of the spatial and temporal properties of protein complexes, the Thermal Proximity Co-Aggregation (TPCA) method was proposed in 2018, which can analyze the time- and space-specific protein-protein interaction variations at the proteomic level while ensuring the vital activities of cells. The TPCA method has been widely recognized and applied in the past few years, but there is still room for optimization.

In this thesis, I mainly work on the computational analysis and optimization of the TPCA method, cumulating to optimized data processing and analytical workflow named Slim-TPCA. The Slim-TPCA method offers a series of improvements in terms of experimental design and data analysis, which simplify the experimental design, eliminate the batch effect between different batches of mass spectrometry analysis, shorten the time required for statistical calculations, and improve the sensitivity of identifying variations of protein complexes. The Slim-TPCA method was demonstrated to be effective for studying protein-protein interactions in glycol-proteomic data and has shown potential in the field of studying phase-separated proteins.

In addition, relying on the ProSAP software developed by our group, I organize the previous protein complex databases and propose the Consensus database, which provides more comprehensive information on protein complexes. Finally, I also explore the effects of different detergents on the CETSA and Slim-TPCA methods and demonstrate that detergents help the CETSA method and Slim-TPCA method to study protein-ligand binding and protein-protein interactions.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008 Apr;18(4):644-52.
[2] Bensimon A, Heck AJ, Aebersold R. Mass spectrometry-based proteomics and network biology. Annu Rev Biochem. 2012;81:379-405.
[3] Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem. 2011;80:273-99.
[4] Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009 Sep;10(9):617-27.
[5] Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014 May 29;509(7502):582-7.
[6] Malovannaya A, Lanz RB, Jung SY, et al. Analysis of the human endogenous coregulator complexome. Cell. 2011 May 27;145(5):787-99.
[7] Kulak NA, Pichler G, Paron I, et al. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014 Mar;11(3):319-24.
[8] Wang X, Wei X, Thijssen B, et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol. 2012 Jan 15;30(2):159-64.
[9] Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007 Sep;25(9):1035-44.
[10] Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013 Apr 10;113(4):2343-94.
[11] Snider J, Kotlyar M, Saraon P, et al. Fundamentals of protein interaction network mapping. Mol Syst Biol. 2015 Dec 17;11(12):848.
[12] Dezso Z, Oltvai ZN, Barabási AL. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res. 2003 Nov;13(11):2450-4.
[13] Sprinzak E, Altuvia Y, Margalit H. Characterization and prediction of protein-protein interactions within and between complexes. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14718-23.
[14] Tan CSH, Go KD, Bisteau X, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science. 2018 Mar 9;359(6380):1170-1177.
[15] Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245-6.
[16] Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci. 2012 Feb;33(2):109-18.
[17] Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. Plant Mol Biol. 2013 Nov;83(4-5):287-301.
[18] Barrios-Rodiles M, Brown KR, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005 Mar 11;307(5715):1621-5.
[19] Blasche S, Koegl M. Analysis of protein-protein interactions using LUMIER assays. Methods Mol Biol. 2013;1064:17-27.
[20] Taipale M, Tucker G, Peng J, et al. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell. 2014;158(2):434-448.
[21] Kerppola TK. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys. 2008;37:465-487.
[22] Zhang XE, Cui Z, Wang D. Sensing of biomolecular interactions using fluorescence complementing systems in living cells. Biosens Bioelectron. 2016;76:243-250.
[23] Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9(4):789-798.
[24] Miller KE, Kim Y, Huh WK, et al. Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. J Mol Biol. 2015;427(11):2039-2055.
[25] Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics. 2012;12(10):1576-1590.
[26] Choi H, Larsen B, Lin ZY, et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods. 2011;8(1):70-73.
[27] Mellacheruvu D, Wright Z, Couzens AL, et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods. 2013;10(8):730-736.
[28] Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. 2012;196(6):801-810.
[29] Lambert JP, Tucholska M, Go C, et al. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics. 2015;118:81-94.
[30] Martinez Molina D, Nordlund P. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev Pharmacol Toxicol. 2016;56:141-161.
[31] Dai L, Prabhu N, Yu LY, et al. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). Annu Rev Biochem. 2019;88:383-408.
[32] Dai L, Li Z, Chen D, et al. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther. 2020;216:107690.
[33] Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341(6141):84-87.
[34] Savitski MM, Reinhard FB, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346(6205):1255784.
[35] Prabhu N, Dai L, Nordlund P. CETSA in integrated proteomics studies of cellular processes. Curr Opin Chem Biol. 2020;54:54-62.
[36] Franken H, Mathieson T, Childs D, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015;10(10):1567-1593.
[37] Reinhard FB, Eberhard D, Werner T, et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat Methods. 2015;12(12):1129-1131.
[38] Becher I, Werner T, Doce C, et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat Chem Biol. 2016;12(11):908-910.
[39] Kitagawa M, Liao PJ, Lee KH, et al. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nat Commun. 2017;8(1):2200. Published 2017 Dec 19.
[40] Dai L, Zhao T, Bisteau X, et al. Modulation of Protein-Interaction States through the Cell Cycle. Cell. 2018;173(6):1481-1494.e13.
[41] Becher I, Andrés-Pons A, Romanov N, et al. Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell. 2018;173(6):1495-1507.e18.
[42] Türkowsky D, Lohmann P, Mühlenbrink M, et al. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. J Proteomics. 2019;192:10-17.
[43] Mateus A, Bobonis J, Kurzawa N, et al. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol. 2018;14(7):e8242.
[44] Savitski MM, Zinn N, Faelth-Savitski M, et al. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell. 2018;173(1):260-274.e25.
[45] Azimi A, Caramuta S, Seashore-Ludlow B, et al. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol Syst Biol. 2018;14(3):e7858.
[46] Lim YT, Prabhu N, Dai L, et al. An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions. PLoS One. 2018;13(12):e0208273.
[47] Dziekan JM, Yu H, Chen D, et al. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med. 2019;11(473):eaau3174.
[48] Huang JX, Lee G, Cavanaugh KE, et al. High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat Methods. 2019;16(9):894-901.
[49] Hashimoto Y, Sheng X, Murray-Nerger LA, et al. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat Commun. 2020;11(1):806.
[50] Kurzawa N, Mateus A, Savitski MM. Rtpca: an R package for differential thermal proximity coaggregation analysis. Bioinformatics. 2021;37(3):431-433.
[51] Miettinen TP, Peltier J, Härtlova A, et al. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J. 2018;37(10):e98359.
[52] Gaetani M, Sabatier P, Saei AA, et al. Proteome Integral Solubility Alteration: A High-Throughput Proteomics Assay for Target Deconvolution. J Proteome Res. 2019;18(11):4027-4037.
[53] Ball KA, Webb KJ, Coleman SJ, et al. An isothermal shift assay for proteome scale drug-target identification. Commun Biol. 2020;3(1):75.
[54] Kurzawa N, Becher I, Sridharan S, et al. A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles [published correction appears in Nat Commun. 2021 Dec 8;12(1):7267]. Nat Commun. 2020;11(1):5783.
[55] Ruan C, Ning W, Liu Z, et al. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins. ACS Chem Biol. 2022;17(1):252-262.
[56] Brenes A, Hukelmann J, Bensaddek D, Lamond AI. Multibatch TMT Reveals False Positives, Batch Effects and Missing Values. Mol Cell Proteomics. 2019;18(10):1967-1980.
[57] Scherer PC, Ding Y, Liu Z, et al. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proc Natl Acad Sci U S A. 2016;113(13):3503-3508.
[58] Lin H, Zhang X, Liu L, et al. Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proc Natl Acad Sci U S A. 2020;117(8):4117-4124.
[59] Zhang X, Shi S, Su Y, et al. Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem. 2020;295(30):10281-10292.
[60] Lin H, Yan Y, Luo Y, et al. IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nat Commun. 2021;12(1):2461.
[61] Martin EW, Holehouse AS. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci. 2020;4(3):307-329.
[62] Chu WT, Wang J. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLoS Comput Biol. 2021;17(3):e1008672.
[63] Oates ME, Romero P, Ishida T, et al. D²P²: database of disordered protein predictions. Nucleic Acids Res. 2013;41(Database issue):D508-D516.
[64] Oates ME, Romero P, Ishida T, et al. D²P²: database of disordered protein predictions. Nucleic Acids Res. 2013;41(Database issue):D508-D516.
[65] Shapiro DM, Ney M, Eghtesadi SA, Chilkoti A. Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications. J Phys Chem B. 2021;125(25):6740-6759.
[66] Bai Y, Liu Y. Illuminating Protein Phase Separation: Reviewing Aggregation-Induced Emission, Fluorescent Molecular Rotor and Solvatochromic Fluorophore Based Probes. Chemistry. 2021;27(59):14564-14576.
[67] Chen W, Wang S, Adhikari S, et al. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling. Anal Chem. 2016;88(9):4864-4871.
[68] Chen W, Adhikari S, Chen L, et al. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. J Chromatogr A. 2017;1498:207-214.
[69] Mateus A, Kurzawa N, Becher I, et al. Thermal proteome profiling for interrogating protein interactions. Mol Syst Biol. 2020;16(3):e9232.
[70] McCracken NA, Peck Justice SA, Wijeratne AB, Mosley AL. Inflect: Optimizing Computational Workflows for Thermal Proteome Profiling Data Analysis. J Proteome Res. 2021;20(4):1874-1888.
[71] Ji H, Lu X, Zheng Z, Sun S, Tan CSH. ProSAP: a GUI software tool for statistical analysis and assessment of thermal stability data [published online ahead of print, 2022 Mar 4]. Brief Bioinform. 2022;bbac057.
[72] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
[73] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140.
[74] McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288-4297.
[75] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
[76] Efstathiou G, Antonakis AN, Pavlopoulos GA, et al. ProteoSign: an end-user online differential proteomics statistical analysis platform. Nucleic Acids Res. 2017;45(W1):W300-W306.
[77] Langley SR, Mayr M. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J Proteomics. 2015;129:83-92.
[78] Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393-1406.
[79] Plubell DL, Wilmarth PA, Zhao Y, et al. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics. 2017;16(5):873-890.
[80] Gatto L, Breckels LM, Naake T, Gibb S. Visualization of proteomics data using R and bioconductor. Proteomics. 2015;15(8):1375-1389.
[81] Giurgiu M, Reinhard J, Brauner B, et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019;47(D1):D559-D563.
[82] Drew K, Wallingford JB, Marcotte EM. hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol Syst Biol. 2021;17(5):e10016.
[83] Havugimana PC, Hart GT, Nepusz T, et al. A census of human soluble protein complexes. Cell. 2012;150(5):1068-1081.
[84] Kristensen AR, Gsponer J, Foster LJ. A high-throughput approach for measuring temporal changes in the interactome. Nat Methods. 2012;9(9):907-909.
[85] Meldal BHM, Bye-A-Jee H, Gajdoš L, et al. Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes. Nucleic Acids Res. 2019;47(D1):D550-D558.
[86] Heusel M, Bludau I, Rosenberger G, et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol Syst Biol. 2019;15(1):e8438.
[87] Fossati A, Li C, Uliana F, et al. PCprophet: a framework for protein complex prediction and differential analysis using proteomic data. Nat Methods. 2021;18(5):520-527.
[88] Prince CC, Jia Z. Detergent quantification in membrane protein samples and its application to crystallization experiments. Amino Acids. 2013;45(6):1293-1302.
[89] Anandan A, Vrielink A. Detergents in Membrane Protein Purification and Crystallisation. Adv Exp Med Biol. 2016;922:13-28.
[90] Wolfe AJ, Parella KJ, Movileanu L. High-Throughput Screening of Protein-Detergent Complexes Using Fluorescence Polarization Spectroscopy. Curr Protoc Protein Sci. 2019;97(1):e96.
[91] Das A, Bysack A, Raghuraman H. Effectiveness of dual-detergent strategy using Triton X-100 in membrane protein purification. Biochem Biophys Res Commun. 2021;578:122-128.
[92] Satta D, Schapira G, Chafey P, et al. Solubilization of plasma membranes in anionic, non-ionic and zwitterionic surfactants for iso-dalt analysis: a critical evaluation. J Chromatogr. 1984;299(1):57-72.
[93] Saouros S, Cecchetti C, Jones A, Cameron AD, Byrne B. Strategies for successful isolation of a eukaryotic transporter. Protein Expr Purif. 2020;166:105522.
[94] Van Vranken JG, Li J, Mitchell DC, et al. Assessing target engagement using proteome-wide solvent shift assays. Elife. 2021;10:e70784.
[95] Neale C, Ghanei H, Holyoake J, et al. Detergent-mediated protein aggregation. Chem Phys Lipids. 2013;169:72-84.

所在学位评定分委会
化学系
国内图书分类号
Q31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/352453
专题理学院_化学系
推荐引用方式
GB/T 7714
孙思远. 热邻近共聚集方法的计算优化及其在分析细胞内蛋白质复合物动态变化中的应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930100-孙思远-化学系.pdf(8449KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙思远]的文章
百度学术
百度学术中相似的文章
[孙思远]的文章
必应学术
必应学术中相似的文章
[孙思远]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。