中文版 | English
题名

Automatic choroid layer segmentation in OCT images via context efficient adaptive network

作者
通讯作者Zhang,Jiong; Zhao,Yitian
发表日期
2022
DOI
发表期刊
ISSN
0924-669X
EISSN
1573-7497
卷号53期号:5页码:5554-5566
摘要
Optical Coherence Tomography (OCT) is a non-invasive and newly-developing technique to image human retina and choroid. Many ocular diseases such as pathological myopia and Age-related Macular Degeneration (AMD) are related to the morphological changes of the choroid. Consequently, the automatic choroid segmentation becomes an important step to the examination and diagnosis of those choroid-related diseases. However, there are still challenges such as the inseparability of the histogram between the choroid and sclera boundaries and the inconsistency of the choroid layer texture and intensity. To solve those challenges, we propose a Context Efficient Adaptive network (CEA-Net) that includes a module of Efficient Channel Attention (ECA), a novel block called adaptive morphological refinement (AMR) and a new loss function called Choroidal Convex Boundary (CCB) regularization. The Adaptive Morphological Refinement (AMR) block is designed to avoid the segmentation of discrete subtle objects in choroid. The new Choroidal Convex Boundary (CCB) loss is proposed to refine the segmented choroidal boundaries. The proposed method is applied to two OCT datasets acquired from two different manufacturers respectively in order to evaluate its effectiveness. The results show that the AMR block and CCB loss function enable the deep network to obtain more accurate choroid segmentations. In addition, for the first time in the field of medical image analysis, we construct a dedicated OCT choroid layer segmentation dataset (OCHID), which consists of 640 OCT images with choroidal boundaries annotations. This dataset is available for public use to assist community researchers in their research on related topics.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Science Foundation of China[62103398] ; General research program of Zhejiang Provincial Department of health[2021PY073] ; Traditional Chinese Medicine project of Zhejiang Province[2021ZB268] ; Ningbo Natural Science Foundation[2021J028,202003N4039,202003N4040] ; Zhejiang Provincial Natural Science Foundation of China["LR22F020008","LZ19F010001"] ; Youth Innovation Promotion Association Chinese Academy of Sciences (CAS)[2021298]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000818093600001
出版者
EI入藏号
20222612299383
EI主题词
Adaptive optics ; Deep learning ; Diagnosis ; Image segmentation ; Medical imaging ; Ophthalmology ; Textures
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Light/Optics:741.1 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85132979169
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/352504
专题工学院_计算机科学与工程系
作者单位
1.Cixi Institute of Biomedical Engineering,Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Zhejiang,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Yan,Qifeng,Gu,Yuanyuan,Zhao,Jinyu,et al. Automatic choroid layer segmentation in OCT images via context efficient adaptive network[J]. APPLIED INTELLIGENCE,2022,53(5):5554-5566.
APA
Yan,Qifeng.,Gu,Yuanyuan.,Zhao,Jinyu.,Wu,Wenjun.,Ma,Yuhui.,...&Zhao,Yitian.(2022).Automatic choroid layer segmentation in OCT images via context efficient adaptive network.APPLIED INTELLIGENCE,53(5),5554-5566.
MLA
Yan,Qifeng,et al."Automatic choroid layer segmentation in OCT images via context efficient adaptive network".APPLIED INTELLIGENCE 53.5(2022):5554-5566.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yan,Qifeng]的文章
[Gu,Yuanyuan]的文章
[Zhao,Jinyu]的文章
百度学术
百度学术中相似的文章
[Yan,Qifeng]的文章
[Gu,Yuanyuan]的文章
[Zhao,Jinyu]的文章
必应学术
必应学术中相似的文章
[Yan,Qifeng]的文章
[Gu,Yuanyuan]的文章
[Zhao,Jinyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。