[1] IIJIMA S, ICHIHASHI T. Single-Shell Carbon Nanotubes of 1-nm Diameter[J]. Nature, 1993, 363(6430): 603-605.
[2] YANG F, WANG M, ZHANG D, et al. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization[J]. Chemical Reviews, 2020, 120(5): 2693-2758.
[3] LI M, LIU X, ZHAO X, et al. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes[J]. Topics in Current Chemistry, 2017, 375(2): 29.
[4] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical Conductivity of Individual Carbon Nanotubes[J]. Nature, 1996, 382(6586): 54-56.
[5] DRESSELHAUS M S, DRESSELHAUS G, SAITO R, et al. Raman Spectroscopy of Carbon Nanotubes[J]. Physics Reports, 2005, 409(2): 47-99.
[6] KANE C L, MELE E J. Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes[J]. Physical Review Letters, 1997, 78(10): 1932-1935.
[7] FRANKLIN A D. Device Technology. Nanomaterials in Transistors: From High-Performance to Thin-Film Applications[J]. Science, 2015, 349(6249): aab2750.
[8] SCHROEDER V, SAVAGATRUP S, HE M, et al. Carbon Nanotube Chemical Sensors[J]. Chemical Reviews, 2019, 119(1): 599-663.
[9] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Carbon Nanomaterials for Electronics, Optoelectronics, Photovoltaics, and Sensing[J]. Chemical Society Reviews, 2013, 42(7): 2824-2860.
[10] LEFEBVRE J, DING J, LI Z, et al. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics[J]. Accounts of Chemical Research, 2017, 50(10): 2479-2486.
[11] LEI T, POCHOROVSKI I, BAO Z. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method[J]. Accounts of Chemical Research, 2017, 50(4): 1096-1104.
[12] RAO R, PINT C L, ISLAM A E, et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications[J]. ACS Nano, 2018, 12(12): 11756-11784.
[13] GAVIRIA ROJAS W A, HERSAM M C. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing[J]. Advanced Materials, 2020, 32(41): e1905654.
[14] QIU S, WU K, GAO B, et al. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices[J]. Advanced Materials, 2019, 31(9): e1800750.
[15] SHULAKER M M, HILLS G, PATIL N, et al. Carbon Nanotube Computer[J]. Nature, 2013, 501(7468): 526-530.
[16] LIU L, HAN J, XU L, et al. Aligned, High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Electronics[J]. Science, 2020, 368(6493): 850-856.
[17] SHULAKER M M, HILLS G, PARK R S, et al. Three-Dimensional Integration of Nanotechnologies for Computing and Data Storage on a Single Chip[J]. Nature, 2017, 547(7661): 74-78.
[18] TULEVSKI G S, FRANKLIN A D, FRANK D, et al. Toward High-Performance Digital Logic Technology with Carbon Nanotubes[J]. ACS Nano, 2014, 8(9): 8730-8745.
[19] ZHAO M, CHEN Y, WANG K, et al. DNA-Directed Nanofabrication of High-Performance Carbon Nanotube Field-Effect Transistors[J]. Science, 2020, 368(6493): 878-881.
[20] BROHMANN M, BERGER F J, MATTHIESEN M, et al. Charge Transport in Mixed Semiconducting Carbon Nanotube Networks with Tailored Mixing Ratios[J]. ACS Nano, 2019, 13(6): 7323-7332.
[21] ZAKHARKO Y, GRAF A, SCHIESSL S P, et al. Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals[J]. Nano Letters, 2016, 16(5): 3278-3284.
[22] CAMPO J, CAMBRE S, BOTKA B, et al. Optical Property Tuning of Single-Wall Carbon Nanotubes by Endohedral Encapsulation of a Wide Variety of Dielectric Molecules[J]. ACS Nano, 2021, 15(2): 2301-2317.
[23] YANG L, WANG S, ZENG Q, et al. Carbon Nanotube Photoelectronic and Photovoltaic Devices and Their Applications in Infrared Detection[J]. Small, 2013, 9(8): 1225-1236.
[24] PARK S, KIM S J, NAM J H, et al. Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single-Walled Carbon Nanotube/C60 Phototransistor[J]. Advanced Materials, 2015, 27(4): 759-765.
[25] BEZDEK M J, LUO S L, LIU R Y, et al. Trace Hydrogen Sulfide Sensing Inspired by Polyoxometalate-Mediated Aerobic Oxidation[J]. ACS Central Science, 2021, 7(9): 1572-1580.
[26] GRAF A, HELD M, ZAKHARKO Y, et al. Electrical Pumping and Tuning of Exciton-Polaritons in Carbon Nanotube Microcavities[J]. Nature Materials, 2017, 16(9): 911-917.
[27] YANG F, WANG X, ZHANG D, et al. Chirality-Specific Growth of Single-Walled Carbon Nanotubes on Solid Alloy Catalysts[J]. Nature, 2014, 510(7506): 522-524.
[28] HASHIMOTO A, SUENAGA K, GLOTER A, et al. Direct Evidence for Atomic Defects in Graphene Layers[J]. Nature, 2004, 430(7002): 870-873.
[29] ZHANG D, YANG J, LI Y. Spectroscopic Characterization of the Chiral Structure of Individual Single-Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons[J]. Small, 2013, 9(8): 1284-1304.
[30] TORRENS O N, ZHENG M, KIKKAWA J M. Energy of K-Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy[J]. Physical Review Letters, 2008, 101(15): 157401.
[31] O'CONNELL M J, BACHILO S M, HUFFMAN C B, et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes[J]. Science, 2002, 297(5581): 593-596.
[32] KATAURA H, KUMAZAWA Y, MANIWA Y, et al. Optical Properties of Single-Wall Carbon Nanotubes[J]. Synthetic Metals, 1999, 103(1): 2555-2558.
[33] WEI X, TANAKA T, YOMOGIDA Y, et al. Experimental Determination of Excitonic Band Structures of Single-Walled Carbon Nanotubes Using Circular Dichroism Spectra[J]. Nature Communications, 2016, 7: 12899.
[34] FURTADO C A, KIM U J, GUTIERREZ H R, et al. Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents[J]. Journal of the American Chemical Society, 2004, 126(19): 6095-6105.
[35] WANG J, CHU H, LI Y. Why Single-Walled Carbon Nanotubes Can Be Dispersed in Imidazolium-Based Ionic Liquids[J]. ACS Nano, 2008, 2(12): 2540-2546.
[36] BELLAYER S, GILMAN J W, EIDELMAN N, et al. Preparation of Homogeneously Dispersed Multiwalled Carbon Nanotube/Polystyrene Nanocomposites Via Melt Extrusion Using Trialkyl Imidazolium Compatibilizer[J]. Advanced Functional Materials, 2005, 15(6): 910-916.
[37] ARNOLD M S, STUPP S I, HERSAM M C. Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients[J]. Nano Letters, 2005, 5(4): 713-718.
[38] ARNOLD M S, GREEN A A, HULVAT J F, et al. Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation[J]. Nature Nanotechnology, 2006, 1(1): 60-65.
[39] GHOSH S, BACHILO S M, WEISMAN R B. Advanced Sorting of Single-Walled Carbon Nanotubes by Nonlinear Density-Gradient Ultracentrifugation[J]. Nature Nanotechnology, 2010, 5(6): 443-450.
[40] FLAVEL B S, KAPPES M M, KRUPKE R, et al. Separation of Single-Walled Carbon Nanotubes by 1-Dodecanol-Mediated Size-Exclusion Chromatography[J]. ACS Nano, 2013, 7(4): 3557-3564.
[41] KHRIPIN C Y, TU X, HOWARTER J, et al. Concentration Measurement of Length-Fractionated Colloidal Single-Wall Carbon Nanotubes[J]. Analytical Chemistry, 2012, 84(20): 8733-8739.
[42] DUESBERG G S, MUSTER J, KRSTIC V, et al. Chromatographic Size Separation of Single-Wall Carbon Nanotubes[J]. Applied Physics A, 1998, 67(1): 117-119.
[43] HELLER D A, MAYRHOFER R M, BAIK S, et al. Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2004, 126(44): 14567-14573.
[44] STRANO M S, ZHENG M, JAGOTA A, et al. Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy[J]. Nano Letters, 2004, 4(4): 543-550.
[45] TU X, MANOHAR S, JAGOTA A, et al. DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes[J]. Nature, 2009, 460(7252): 250-253.
[46] ZHENG M, JAGOTA A, SEMKE E D, et al. DNA-Assisted Dispersion and Separation of Carbon Nanotubes[J]. Nature Materials, 2003, 2(5): 338-342.
[47] ZHENG M, JAGOTA A, STRANO M S, et al. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly[J]. Science, 2003, 302(5650): 1545-1548.
[48] LI H B, JIN H H, ZHANG J, et al. Understanding the Electrophoretic Separation of Single-Walled Carbon Nanotubes Assisted by Thionine as a Probe[J]. Journal of Physical Chemistry C, 2010, 114(45): 19234-19238.
[49] TANAKA T, JIN H, MIYATA Y, et al. Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes[J]. Nano Letters, 2009, 9(4): 1497-1500.
[50] TANAKA T, JIN H H, MIYATA Y, et al. High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis[J]. Applied Physics Express, 2008, 1(11): 114001.
[51] LIU H, FENG Y, TANAKA T, et al. Diameter-Selective Metal/Semiconductor Separation of Single-Wall Carbon Nanotubes by Agarose Gel[J]. Journal of Physical Chemistry C, 2010, 114(20): 9270-9276.
[52] LIU H, NISHIDE D, TANAKA T, et al. Large-Scale Single-Chirality Separation of Single-Wall Carbon Nanotubes by Simple Gel Chromatography[J]. Nature Communications, 2011, 2(1): 309.
[53] YOMOGIDA Y, TANAKA T, ZHANG M, et al. Industrial-Scale Separation of High-Purity Single-Chirality Single-Wall Carbon Nanotubes for Biological Imaging[J]. Nature Communications, 2016, 7: 12056.
[54] YANG D, LI L, WEI X, et al. Submilligram-Scale Separation of near-Zigzag Single-Chirality Carbon Nanotubes by Temperature Controlling a Binary Surfactant System[J]. Science Advances, 2021, 7(8): eabe0084.
[55] LI H, GORDEEV G, WASSERROTH S, et al. Inner- and Outer-Wall Sorting of Double-Walled Carbon Nanotubes[J]. Nature Nanotechnology, 2017, 12(12): 1176-1182.
[56] MACE C R, AKBULUT O, KUMAR A A, et al. Aqueous Multiphase Systems of Polymers and Surfactants Provide Self-Assembling Step-Gradients in Density[J]. Journal of the American Chemical Society, 2012, 134(22): 9094-9097.
[57] LI H, GORDEEV G, GARRITY O, et al. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime[J]. ACS Nano, 2020, 14(1): 948-963.
[58] PODLESNY B, OLSZEWSKA B, YAARI Z, et al. En Route to Single-Step, Two-Phase Purification of Carbon Nanotubes Facilitated by High-Throughput Spectroscopy[J]. Scientific Reports, 2021, 11(1): 10618.
[59] FAGAN J A, KHRIPIN C Y, SILVERA BATISTA C A, et al. Isolation of Specific Small-Diameter Single-Wall Carbon Nanotube Species Via Aqueous Two-Phase Extraction[J]. Advanced Materials, 2014, 26(18): 2800-2804.
[60] AO G, KHRIPIN C Y, ZHENG M. DNA-Controlled Partition of Carbon Nanotubes in Polymer Aqueous Two-Phase Systems[J]. Journal of the American Chemical Society, 2014, 136(29): 10383-10392.
[61] AO G, STREIT J K, FAGAN J A, et al. Differentiating Left- and Right-Handed Carbon Nanotubes by DNA[J]. Journal of the American Chemical Society, 2016, 138(51): 16677-16685.
[62] LYU M, MEANY B, YANG J, et al. Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems[J]. Journal of the American Chemical Society, 2019, 141(51): 20177-20186.
[63] KHRIPIN C Y, FAGAN J A, ZHENG M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases[J]. Journal of the American Chemical Society, 2013, 135(18): 6822-6825.
[64] GUI H, STREIT J K, FAGAN J A, et al. Redox Sorting of Carbon Nanotubes[J]. Nano Letters, 2015, 15(3): 1642-1646.
[65] SAMANTA S K, FRITSCH M, SCHERF U, et al. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping[J]. Accounts of Chemical Research, 2014, 47(8): 2446-2456.
[66] DING J, LI Z, LEFEBVRE J, et al. Enrichment of Large-Diameter Semiconducting Swcnts by Polyfluorene Extraction for High Network Density Thin Film Transistors[J]. Nanoscale, 2014, 6(4): 2328-2339.
[67] WANG J, LEI T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping[J]. Polymers, 2020, 12(7)
[68] NISH A, HWANG J Y, DOIG J, et al. Highly Selective Dispersion of Single-Walled Carbon Nanotubes Using Aromatic Polymers[J]. Nature Nanotechnology, 2007, 2(10): 640-646.
[69] MISTRY K S, LARSEN B A, BLACKBURN J L. High-Yield Dispersions of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Tunable Narrow Chirality Distributions[J]. ACS Nano, 2013, 7(3): 2231-2239.
[70] WANG H, BAO Z. Conjugated Polymer Sorting of Semiconducting Carbon Nanotubes and Their Electronic Applications[J]. Nano Today, 2015, 10(6): 737-758.
[71] GU J, HAN J, LIU D, et al. Solution-Processable High-Purity Semiconducting Swcnts for Large-Area Fabrication of High-Performance Thin-Film Transistors[J]. Small, 2016, 12(36): 4993-4999.
[72] CHORTOS A, POCHOROVSKI I, LIN P, et al. Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer[J]. ACS Nano, 2017, 11(6): 5660-5669.
[73] WANG H, KOLEILAT G I, LIU P, et al. High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors[J]. ACS Nano, 2014, 8(3): 2609-2617.
[74] LEE H W, YOON Y, PARK S, et al. Selective Dispersion of High Purity Semiconducting Single-Walled Carbon Nanotubes with Regioregular Poly(3-Alkylthiophene)S[J]. Nature Communications, 2011, 2: 541.
[75] HWANG J-Y, NISH A, DOIG J, et al. Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2008, 130(11): 3543-3553.
[76] STRANKS S D, HABISREUTINGER S N, DIRKS B, et al. Novel Carbon Nanotube-Conjugated Polymer Nanohybrids Produced by Multiple Polymer Processing[J]. Advanced Materials, 2013, 25(31): 4365-4371.
[77] LIU D, LI P, YU X, et al. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes[J]. Advanced Materials, 2017, 29(8)
[78] LI Y H, ZHENG M M, YAO J, et al. High-Purity Monochiral Carbon Nanotubes with a 1.2 Nm Diameter for High-Performance Field-Effect Transistors[J]. Advanced Functional Materials, 2022, 32(1)
[79] POUDEL Y R, LI W Z. Synthesis, Properties, and Applications of Carbon Nanotubes Filled with Foreign Materials: A Review[J]. Materials Today Physics, 2018, 7: 7-34.
[80] SLOAN J, KIRKLAND A I, HUTCHISON J L, et al. Structural Characterization of Atomically Regulated Nanocrystals Formed within Single-Walled Carbon Nanotubes Using Electron Microscopy[J]. Accounts of Chemical Research, 2002, 35(12): 1054-1062.
[81] KHLOBYSTOV A N, BRITZ D A, BRIGGS G A. Molecules in Carbon Nanotubes[J]. Accounts of Chemical Research, 2005, 38(12): 901-909.
[82] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in Carbon Nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[83] SMITH B W, MONTHIOUX M, LUZZI D E. Carbon Nanotube Encapsulated Fullerenes: A Unique Class of Hybrid Materials[J]. Chemical Physics Letters, 1999, 315(1-2): 31-36.
[84] BANDOW S, TAKIZAWA M, HIRAHARA K, et al. Raman Scattering Study of Double-Wall Carbon Nanotubes Derived from the Chains of Fullerenes in Single-Wall Carbon Nanotubes[J]. Chemical Physics Letters, 2001, 337(1-3): 48-54.
[85] LIM H E, MIYATA Y, KITAURA R, et al. Growth of Carbon Nanotubes Via Twisted Graphene Nanoribbons[J]. Nature Communications, 2013, 4: 2548.
[86] ZHANG J, ZHU Z, FENG Y, et al. Evidence of Diamond Nanowires Formed inside Carbon Nanotubes from Diamantane Dicarboxylic Acid[J]. Angewandte Chemie International Edition, 2013, 52(13): 3717−3721.
[87] WANG S S, YANG G Y. Recent Advances in Polyoxometalate-Catalyzed Reactions[J]. Chemical Reviews, 2015, 115(11): 4893-4962.
[88] KABA M S, SONG I K, DUNCAN D C, et al. Molecular Shapes, Orientation, and Packing of Polyoxometalate Arrays Imaged by Scanning Tunneling Microscopy[J]. Inorganic Chemistry, 1998, 37(3): 398-406.
[89] FEI B, LU H F, CHEN W, et al. Ionic Peapods from Carbon Nanotubes and Phosphotungstic Acid[J]. Carbon, 2006, 44(11): 2261-2264.
[90] GUAN W, WU Z, SU Z. Dft Study of Ionic Peapod Structures from Single-Walled Carbon Nanotubes and Lindqvist Tungstates[J]. Dalton Transactions, 2012, 41(9): 2798-2803.
[91] LIU Z, JOUNG S K, OKAZAKI T, et al. Self-Assembled Double Ladder Structure Formed inside Carbon Nanotubes by Encapsulation of H8si8o12[J]. ACS Nano, 2009, 3(5): 1160-1166.
[92] HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Ionic Nanopeapods: Next-Generation Proton Conducting Membranes Based on Phosphotungstic Acid Filled Carbon Nanotube[J]. Nano Energy, 2016, 23: 114-121.
[93] JORDAN J W, LOWE G A, MCSWEENEY R L, et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes[J]. Advanced Materials, 2019, 31(41): e1904182.
[94] XU Z, QIU L, DING F. The Kinetics of Chirality Assignment in Catalytic Single-Walled Carbon Nanotube Growth and the Routes Towards Selective Growth[J]. Chemical Science, 2018, 9(11): 3056–3061.
[95] JORDAN J W, CAMERON J M, LOWE G A, et al. Stabilization of Polyoxometalate Charge Carriers Via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes[J]. Angewandte Chemie International Edition, 2022, 61(8): e202115619.
[96] JORDAN J W, TOWNSEND W J V, JOHNSON L R, et al. Electrochemistry of Redox-Active Molecules Confined within Narrow Carbon Nanotubes[J]. Chemical Society Reviews, 2021, 50(19): 10895-10916.
[97] CAMBRE S, WENSELEERS W. Separation and Diameter-Sorting of Empty (End-Capped) and Water-Filled (Open) Carbon Nanotubes by Density Gradient Ultracentrifugation[J]. Angewandte Chemie International Edition, 2011, 50(12): 2764-2768.
[98] CAMPO J, PIAO Y, LAM S, et al. Enhancing Single-Wall Carbon Nanotube Properties through Controlled Endohedral Filling[J]. Nanoscale Horizons, 2016, 1(4): 317-324.
[99] STREIT J, SNYDER C R, CAMPO J, et al. Alkane Encapsulation Induces Strain in Small-Diameter Single-Wall Carbon Nanotubes[J]. Journal of Physical Chemistry C, 2018, 122(21): 11577-11585.
[100] LI H, GORDEEV G, GARRITY O, et al. Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction[J]. ACS Nano, 2019, 13(2): 2567-2578.
[101] LI H, GORDEEV G, TOROZ D, et al. Endohedral Filling Effects in Sorted and Polymer-Wrapped Single-Wall Carbon Nanotubes[J]. Journal of Physical Chemistry C, 2021, 125(13): 7476-7487.
[102] CAO Q, TERSOFF J, FARMER D B, et al. Carbon Nanotube Transistors Scaled to a 40-Nanometer Footprint[J]. Science, 2017, 356(6345): 1369-1372.
[103] HILLS G, LAU C, WRIGHT A, et al. Modern Microprocessor Built from Complementary Carbon Nanotube Transistors[J]. Nature, 2019, 572(7771): 595-602.
[104] LIPOMI D J, VOSGUERITCHIAN M, TEE B C, et al. Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788-792.
[105] HU Y F, PENG L M, XIANG L, et al. Flexible Integrated Circuits Based on Carbon Nanotubes[J]. Accounts of Materials Research, 2020, 1(1): 88-99.
[106] PIAO Y, MEANY B, POWELL L R, et al. Brightening of Carbon Nanotube Photoluminescence through the Incorporation of Sp3 Defects[J]. Nature Chemistry, 2013, 5(10): 840-845.
[107] HE X, HTOON H, DOORN S K, et al. Carbon Nanotubes as Emerging Quantum-Light Sources[J]. Nature Materials, 2018, 17(8): 663-670.
[108] SAHA A, GIFFORD B J, HE X, et al. Narrow-Band Single-Photon Emission through Selective Aryl Functionalization of Zigzag Carbon Nanotubes[J]. Nature Chemistry, 2018, 10(11): 1089-1095.
[109] KOSWATTA S O, VALDES-GARCIA A, STEINER M B, et al. Ultimate Rf Performance Potential of Carbon Electronics[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2739-2750.
[110] ZHENG M. Sorting Carbon Nanotubes[J]. Topics in Current Chemistry, 2017, 375(1): 13.
[111] HERSAM M C. Progress Towards Monodisperse Single-Walled Carbon Nanotubes[J]. Nature Nanotechnology, 2008, 3(7): 387-394.
[112] KRUPKE R, HENNRICH F, LOHNEYSEN H, et al. Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes[J]. Science, 2003, 301(5631): 344-347.
[113] LEI T, CHEN X, PITNER G, et al. Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes[J]. Journal of the American Chemical Society, 2016, 138(3): 802-805.
[114] WANG H L, BAO Z N. Conjugated Polymer Sorting of Semiconducting Carbon Nanotubes and Their Electronic Applications[J]. Nano Today, 2015, 10(6): 737-758.
[115] HIRANO A, TANAKA T, URABE Y, et al. Ph- and Solute-Dependent Adsorption of Single-Wall Carbon Nanotubes onto Hydrogels: Mechanistic Insights into the Metal/Semiconductor Separation[J]. ACS Nano, 2013, 7(11): 10285-10295.
[116] ZHENG M, DINER B A. Solution Redox Chemistry of Carbon Nanotubes[J]. Journal of the American Chemical Society, 2004, 126(47): 15490-15494.
[117] ANTARIS A L, SEO J W T, BROCK R E, et al. Probing and Tailoring Ph-Dependent Interactions between Block Copolymers and Single-Walled Carbon Nanotubes for Density Gradient Sorting[J]. Journal of Physical Chemistry C, 2012, 116(37): 20103-20108.
[118] FONG D, BODNARYK W J, RICE N A, et al. Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(41): 14560-14566.
[119] WANG P, KIM M, PENG Z, et al. Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water[J]. ACS Nano, 2017, 11(9): 9231-9238.
[120] WANG J, NGUYEN T D, CAO Q, et al. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting[J]. ACS Nano, 2016, 10(3): 3222-3232.
[121] LIU J, SHI W, NI B, et al. Incorporation of Clusters within Inorganic Materials through Their Addition During Nucleation Steps[J]. Nature Chemistry, 2019, 11(9): 839-845.
[122] KLEMPERER W G. Introduction to Early Transition Metal Polyoxoanions[M]. 1990.
[123] POPE M T, VARGA G M. Heteropoly Blues .I. Reduction Stoichiometries and Reduction Potentials of Some 12-Tungstates[J]. Inorganic Chemistry, 1966, 5(7): 1249-&.
[124] NAIR N, USREY M L, KIM W J, et al. Estimation of the (N,M) Concentration Distribution of Single-Walled Carbon Nanotubes from Photoabsorption Spectra[J]. Analytical Chemistry, 2006, 78(22): 7689-7696.
[125] NAUMOV A V, GHOSH S, TSYBOULSKI D A, et al. Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra[J]. ACS Nano, 2011, 5(3): 1639-1648.
[126] ITKIS M E, PEREA D E, NIYOGI S, et al. Purity Evaluation of as-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase near-Ir Spectroscopy[J]. Nano Letters, 2003, 3(3): 309-314.
[127] ZHANG D, YANG J, YANG F, et al. (N,M) Assignments and Quantification for Single-Walled Carbon Nanotubes on Sio2/Si Substrates by Resonant Raman Spectroscopy[J]. Nanoscale, 2015, 7(24): 10719-10727.
[128] HOMENICK C M, ROUSINA-WEBB A, CHENG F Y, et al. High-Yield, Single-Step Separation of Metallic and Semiconducting Swcnts Using Block Copolymers at Low Temperatures[J]. Journal of Physical Chemistry C, 2014, 118(29): 16156-16164.
[129] YU M, TRINKLE D R. Accurate and Efficient Algorithm for Bader Charge Integration[J]. Journal of Chemical Physics, 2011, 134(6): 064111.
[130] ZHENG S T, YANG G Y. Recent Advances in Paramagnetic-Tm-Substituted Polyoxometalates (Tm = Mn, Fe, Co, Ni, Cu)[J]. Chemical Society Reviews, 2012, 41(22): 7623-7646.
[131] KIM K K, BAE J J, PARK H K, et al. Fermi Level Engineering of Single-Walled Carbon Nanotubes by Aucl3 Doping[J]. Journal of the American Chemical Society, 2008, 130(38): 12757-12761.
[132] YANG X, LIU T, LI R, et al. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[133] LEBEDKIN S, ARNOLD K, KIOWSKI O, et al. Raman Study of Individually Dispersed Single-Walled Carbon Nanotubes under Pressure[J]. Physical Review B, 2006, 73(9): 094109.
[134] KAWAI M, KYAKUNO H, SUZUKI T, et al. Single Chirality Extraction of Single-Wall Carbon Nanotubes for the Encapsulation of Organic Molecules[J]. Journal of the American Chemical Society, 2012, 134(23): 9545-9548.
[135] FAGAN J A, HUH J Y, SIMPSON J R, et al. Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes[J]. ACS Nano, 2011, 5(5): 3943-3953.
[136] HELLER D A, MAYRHOFER R M, BAIK S, et al. Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2004, 126(44): 14567-14573.
[137] FLAVEL B S, MOORE K E, PFOHL M, et al. Separation of Single-Walled Carbon Nanotubes with a Gel Permeation Chromatography System[J]. ACS Nano, 2014, 8(2): 1817-1826.
[138] ZHU A, YANG X, ZHANG L, et al. Selective Separation of Single-Walled Carbon Nanotubes in Aqueous Solution by Assembling Redox Nanoclusters[J]. Nanoscale, 2022, 14(3): 953-961.
[139] TSIGDINOS G A, HALLADA C J. Molybdovanadophosphoric Acids and Their Salts .I. Investigation of Methods of Preparation and Characterization[J]. Inorganic Chemistry, 1968, 7(3): 437-+.
[140] OKAZAKI T, OKUBO S, NAKANISHI T, et al. Optical Band Gap Modification of Single-Walled Carbon Nanotubes by Encapsulated Fullerenes[J]. Journal of the American Chemical Society, 2008, 130(12): 4122-4128.
[141] KOZHEVNIKOV I V, MATVEEV K I. Homogeneous Catalysts Based on Heteropoly Acids (Review)[J]. Applied Catalysis, 1983, 5(2): 135-150.
修改评论