中文版 | English
题名

基于复合多孔结构的离-电式柔性压力传感器

其他题名
COMPOSITE POROUS STRUCTURE-BASEDIONTRONIC FLEXIBLE PRESSURE SENSOR
姓名
姓名拼音
LIU Qingxian
学号
11849521
学位类型
博士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
王泉
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-20
论文提交日期
2022-07-06
学位授予单位
哈尔滨工业大学
学位授予地点
深圳
摘要

柔性电容式压力传感器能将外部力刺激转化为电容信号,且兼具良好的柔韧性,在人机交互界面、健康监测、电子皮肤等领域有着重要的应用。本研究围绕基于双电层(EDL)传感机理的离-电式压力传感器,以多孔复合离子材料为传感层,通过传感机理分析、有限元仿真和实验研究,深入探讨了多孔结构的孔隙率及压缩模量对传感器灵敏度的影响机制,为离-电式电容压力传感器的灵敏度提升提供新的策略,并为其在可穿戴、可涂覆以及透明传感等领域的应用提供了思路和证据。

本研究通过力学机理分析和有限元方法对多孔结构受压条件下的力学行为进行分析,发现多孔结构的压缩变形与离-电界面的协同作用是实现高传感性能的关键。有限元分析结果表明,高孔隙、低模量的孔结构能有效改善材料的压缩变形性能,提高受力过程中离-电界面接触面积的变化量,进而提升传感器的灵敏度。基于此思路,采用孔隙率为95.4%和压缩模量为3.4 kPa的聚氨酯(PU)-离子液体(IL)复合泡沫作为离子传感层,器件的灵敏度高达9 280 kPa-1,是目前已报道的离-电式压力传感器中的最高记录。同时该器件的响应速度快至10 ms,80 kPa压力下分辨率为0.125%,能在数千次的压缩或弯曲循环测试中保持力学稳定,在水波、水下振动和机器故障监测等领域展现出潜在的应用价值。

在复合多孔离子结构设计理念的基础上,直接采用IL活化的多孔布料作为离子传感层,研制出一种可穿戴式的压力传感织物。这种IL活化的方式可在服装的指定目标区域进行处理,工艺简单高效,制备的传感织物能感应到微弱的脉搏压力信号且兼具织物的柔性和舒适性。此外,依据超细银纳米线(AgNW)容易失稳弯曲的力学性质,得到具有良好力学稳定性的多孔电极层,结合醋酸纤维素(CA)-IL复合多孔膜,设计出一种通孔结构的多功能传感织物。该传感器的灵敏度达到4.46 kPa-1,响应时间为39 ms,能够清晰地采集多种人体运动和生理活动中的力学信息,且兼具防水、透气及抗菌等特点,在智能健康或运动监测中具有广阔的应用前景。

此外,本文以聚酰亚胺(PI)为基础材料,同样采用多孔复合离子层的设计策略,开发出像漆料一样可涂覆的耐高温压力传感涂料。与传统封装式器件相比,该传感涂料与基底结构的共形性更强,可涂覆在多种曲面的表面。等离子处理后,涂料的下电极与不锈钢基底间的粘接强度显著提升,其界面韧性高达413 J/m2。同时,涂料中的电极层与传感层间的界面韧性大于127 J/m2,无需使用额外粘结剂进行封装,表现出自粘附性。这种传感涂料在300 °C高温和2.5 MPa高压下仍能响应到外部力刺激,有望为离-电式柔性压力传感器的集成开辟一条新途径,并在紧固件应力松弛监测中显示出潜在的应用前景。

多孔结构带来的光散射使器件无法同时兼顾高灵敏和高透明。为解决这个难题,本研究提出在多孔结构中填充与其折射率相匹配的IL的方法,从而有效地保持其界面的连续性,降低光散射,致使复合离子膜的透明度高达94.8%。此外,该透明离子膜的表面保留有少量的凸起结构且韧性也显著提升,同时满足高透明、高韧性及高灵敏离-电式柔性压力传感器的设计需求。最终器件的透光度达到90.4%,灵敏度为1.194 kPa-1,能检测到低至0.4 Pa的微弱力信号,且具有较高的力学稳定性,在透明拨号手环、透明智能窗户中表现出较好的应用潜力。

本文分析了离-电式电容压力传感器传感的力学原理,提出了以复合多孔离子膜为基础的传感器设计思路,制备得到了超高灵敏、可穿戴式、可涂覆以及高透明的传感器件,为柔性电容式压力传感器的制备及应用提供了系列新的设计方案。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] WANG Y, CHAO M, WAN P, et al. A Wearable Breathable Pressure Sensor from Metal-Organic Framework Derived Nanocomposites for Highly Sensitive Broad-Range Healthcare Monitoring [J]. Nano Energy, 2020, 70: 104560.
[2] ZHANG Z, ZHU Z, BAZOR B, et al. Feetbeat: A Flexible Iontronic Sensing Wearable Detects Pedal Pulses and Muscular Activities [J]. IEEE Transactions on Bio-Medical Engineering, 2019, 66(11): 3072-3079.
[3] HAMMOCK M L, CHORTOS A, TEE B C, et al. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress [J]. Advanced Materials, 2013, 25(42): 5997-6038.
[4] LI R, SI Y, ZHU Z, et al. Supercapacitive Iontronic Nanofabric Sensing [J]. Advanced Materials, 2017, 29(36): 1700253.
[5] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection [J]. Nature Nanotechnology, 2011, 6(5): 296-301.
[6] GUO C F, SUN T, LIU Q, et al. Highly Stretchable and Transparent Nanomesh Electrodes Made by Grain Boundary Lithography [J]. Nature Communications, 2014, 5(1): 1-8.
[7] WAN Y, WANG Y, GUO C F. Recent Progresses on Flexible Tactile Sensors [J]. Materials Today Physics, 2017, 1: 61-73.
[8] YOU I, MACKANIC D. G, MATSUHISA N, et al. Artificial Multimodal Receptors Based on Ion Relaxation Dynamics [J]. Science, 2020, 370(6519): 961-965.
[9] TIAN H, SHU Y, WANG X F, et al. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range [J]. Scientific Reports, 2015, 5(1): 1-6.
[10] 侯星宇,郭传飞. 柔性压力传感器的原理及应用[J]. 物理快报,2020,69(17):178102.
[11] ZHANG Y, HOWVER R, GOGOI B, et al. A High-Sensitive Ultra-Thin MEMS Capacitive Pressure Sensor [J]. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference IEEE, 2011, 112-115.
[12] WEADON T L, EVANS T H, SABOLSKY E M. An Analytical Model for Porous Polymer-Ceramic Capacitive Pressure Sensors [J]. IEEE Sensors Journal, 2014, 14(12): 4411-4422.
[13] WAN Y, QIU Z, HONG Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures [J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[14] CHANG Y, WANG L, LI R, et al. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins [J]. Advanced Materials, 2021, 33(7): e2003464.
[15] MANNSFELD S C, TEE B C, STOLTENBERG R M, et al. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers [J]. Nature Materials, 2010, 9(10): 859-864.
[16] NIE B, XING S, BRANDT J D, et al. Droplet-Based Interfacial Capacitive Sensing [J]. Lab on a Chip, 2012, 12(6): 1110-1118.
[17] OLDHAM K B. A Gouy-Chapman-Stern Model of the Double Layer at a (Metal)/(Ionic Liquid) Interface [J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 131-138.
[18] ALLEN J B, LARRY R F, Electrochemical Methods Fundamentals and Applications [M]. New York: Wiley, 2003, 534-579.
[19] PARSONS R. Electrical Double Layer: Recent Experimental and Theoretical Developments [J]. Chemical Reviews, 1990, 90(5): 813-826.
[20] CARNIE S L, Torrie G M. The Statistical Mechanics of the Electrical Double Layer [M]. Advances in Chemical Physics, 1984, 56: 141.
[21] QIU Z, WAN Y, ZHOU W, et al. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine Leaf [J]. Advanced Functional Materials, 2018, 28(37): 1802842.
[22] GREENWOOD J A, WILLIAMSON J B P. Contact of Nominally Flat Surfaces [J]. Proceedings of the Royal Society of London, 1966, 295(1442): 300-319.
[23] PERSSON B N J. Contact Mechanics for Randomly Rough Surfaces [J]. Surface Science Reports, 2006, 61(4): 201-227.
[24] BAI N, WANG L, WANG Q, et al. Graded Intrafillable Architecture-Based Iontronic Pressure Sensor with Ultra-Broad-Range High Sensitivity [J]. Nature Communications, 2020, 11(1): 1-9.
[25] CHO S H, LEE S W, YU S, et al. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity [J]. ACS Applied Materials and Interfaces, 2017, 9(11): 10128-10135.
[26] CHHETRY A, KIM J, YOON H, et al. Ultrasensitive Interfacial Capacitive Pressure Sensor Based on a Randomly Distributed Microstructured Iontronic Film for Wearable Applications [J]. ACS Applied Materials and Interfaces, 2019, 11(3): 3438-3449.
[27] CHENG Y, YING Y, JAPIP S, et al. Advanced Porous Materials in Mixed Matrix Membranes [J]. Advanced Materials, 2018, 30(47): e1802401.
[28] COOPER A I. Porous Materials and Supercritical Fluids [J]. Advanced Materials, 2003, 15(13): 1049-1059.
[29] SUN Y, CHU Y, WU W, et al. Nanocellulose-Based Lightweight Porous Materials: A Review [J]. Carbohydrate Polymers, 2021, 255: 117489.
[30] LI D, XIA Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning [J]. Nano Letters, 2004, 4(5): 933-938.
[31] FRIDRIKH S V, YU J H, BRENNER M P, et al. Controlling the Fiber Diameter During Electrospinning [J]. Physical Review Letters, 2003, 90(14): 144502.
[32] RAHMATI M, MILLS D K, URBANSKA A M, et al. Electrospinning for Tissue Engineering Applications [J]. Progress in Materials Science, 2021, 117: 100721.
[33] DZIEMIDOWICZ K, SANG Q, WU J, et al. Electrospinning for Healthcare: Recent Advancements [J]. Journal of Materials Chemistry B, 2021, 9(4): 939-951.
[34] NIU C, MENG J, WANG X, et al. General Synthesis of Complex Nanotubes by Gradient Electrospinning and Controlled Pyrolysis [J]. Nature Communications, 2015, 6(1): 1-9.
[35] KARPIŃSKA A, SIMAITE A, BUZGO M. Theoretical Models of the Most Promising Needle-Free Electrospinning Systems for Drug Delivery Applications [J]. Proceedings, 2020, 78(1): 33.
[36] TIAN L, ZHAO C, LI J, et al. Multi-Needle, Electrospun, Nanofiber Filaments: Effects of the Needle Arrangement on the Nanofiber Alignment Degree and Electrostatic Field Distribution [J]. Textile Research Journal, 2014, 85(6): 621-631.
[37] STENZEL M H, BARNER-KOWOLLIK C, DAVIS T P. Formation of Honeycomb-Structured, Porous Films via Breath Figures with Different Polymer Architectures [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(8): 2363-2375.
[38] SRINIVASARAO M, COLLINGS D, PHILIPS A, et al. Three Dimensionally Ordered Array of Air Bubbles in a Polymer Film [J]. Science, 2001, 292(5514): 79-83.
[39] BUNZ U H F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials [J]. Advanced Materials, 2006, 18(8): 973-989.
[40] DONG R, YAN J, MA H, et al. Dimensional Architecture of Ferrocenyl-Based Oligomer Honeycomb-Patterned Films: From Monolayer to Multilayer [J]. Langmuir, 2011, 27(14): 9052-9056.
[41] JIN F L, ZHAO M, PARK M, et al. Recent Trends of Foaming in Polymer Processing: A Review [J]. Polymers, 2019, 11(6): 953.
[42] WANG X-B, JIANG X-F, BANDO Y. Blowing Route Towards Advanced Inorganic Foams [J]. Bulletin of the Chemical Society of Japan, 2019, 92(1): 245-263.
[43] COLTON J S. The Nucleation of Microcellular Thermoplastic Foam with Additives Part I [J]. Polymer Engineering and Science, 1987, 27(7): 485-492.
[44] KITCHENEDR J A, SC D, COOPERP C F. Current Concepts in the Theory of Foaming [J]. Quarterly Reviews,1959, 13(1): 71-97.
[45] WANG H, ZHANG R, YUAN D, et al. Gas Foaming Guided Fabrication of 3D Porous Plasmonic Nanoplatform with Broadband Absorption, Tunable Shape, Excellent Stability, and High Photothermal Efficiency for Solar Water Purification [J]. Advanced Functional Materials, 2020, 30(46): 2003995.
[46] CHEN Y W, ZHAN H, WANG J N. A Direct Foaming Approach for Carbon Nanotube Aerogels with Ultra-Low Thermal Conductivity and High Mechanical Stability [J]. Nanoscale, 2021, 13(27): 11878-11886.
[47] GELB L D, GUBBINS K E, RADHAKRISHNAN R, el al. Phase Separation in Confined Systems [J]. Reports on Progress in Physics, 1999, 62(12): 1573-1659.
[48] GAO Y, SU K, WANG X, et al. A Metal-Nano GO Frameworks/PPS Membrane with Super Water Flux and High Dyes Interception [J]. Journal of Membrane Science, 2019, 574: 55-64.
[49] LIM W G, JO C, CHO A, et al. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation [J]. Advanced Materials, 2019, 31(3): e1806547.
[50] YING G L, JIANG N, MAHARJAN S, et al. Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels [J]. Advanced Materials, 2018, 30(50): e1805460.
[51] WOOD H, SOURIRAJAN S. The Effect of Additives, Solvent Type, and Polymer Concentration on Macromolecule Dimensions [J]. Journal of Applied Polymer Science, 1991, 43(1): 213-217.
[52] NISHI T, WANG T T, KWEI T K. Thermally Induced Phase Separation [J]. Macromolecules, 1975, 8(2): 227-234.
[53] 莫高明. 聚丙烯腈溶液的凝胶化和相分离行为的研究 [D]. 宁波:中国科学院宁波材料技术与工程研究所,2016: 3-5.
[54] LIU Q, ZHANG P, NA B, et al. Silica Nanoparticle-Mediated Solution-Phase Separation to Highly Porous Polylactide Membranes [J]. The Journal of Physical Chemistry C, 2014, 118(44): 25620-25625.
[55] LIU Q, LV R, NA B, et al. Robust Polylactide Nanofibrous Membranes by Gelation/Crystallization from Solution [J]. RSC Advances, 2015, 5(70): 57076-57081.
[56] SPRIGGS R M. Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materiais, Particularly Aluminum Oxide [J]. Journal of the American Ceramic Society, 1961, 44(12): 628-629.
[57] WANG J C. Young's Modulus of Porous Materials [J]. Journal of Materials Science, 1984, 19(3): 801-808.
[58] PHANI K K, NIYOGI S K. Young's Modulus of Porous Brittle Solids [J]. Journal of Materials Science, 1987, 22(2): 257-263.
[59] GIBSON L J, ASHBY M F. Cellular Solids Structure Properties Oxford Pergamon [M]. Oxford: Pergamon Press, 1989, 120-168.
[60] MILED K, SAB K, LE ROY R. Effective Elastic Properties of Porous Materials: Homogenization Schemes vs Experimental Data [J]. Mechanics Research Communications, 2011, 38(2): 131-135.
[61] GHANDI K. A Review of Ionic Liquids, Their Limits and Applications [J]. Green and Sustainable Chemistry, 2014, 4: 44-53.
[62] HAJIPOUR A R, RAFIEE F. Basic Ionic Liquids. A Short Review [J]. Journal of the Iranian Chemical Society, 2009, 6(4): 647-678.
[63] SOMERS A, HOWLETT P, MACFARLANE D, et al. A Review of Ionic Liquid Lubricants [J]. Lubricants, 2013, 1: 3-21.
[64] REN Y, Guo J, LIU Z, et al. Ionic Liquid Based Click Ionogels [J]. Science Advances, 2019, 5(8): eaax0648.
[65] NIE B, LI R, CAO J, et al. Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing [J]. Advanced Materials, 2015, 27(39): 6055-6062.
[66] ZHU Z, LI R, PAN T. Imperceptible Epidermal-Iontronic Interface for Wearable Sensing [J]. Advanced Materials, 2018, 30(6): 1705122.
[67] ZHANG F, LIU J, DING X, et al. Experimental and Finite Element Analyses of Contact Behaviors between Non-Transparent Rough Surfaces [J]. Journal of the Mechanics and Physics of Solids, 2019, 126: 87-100.
[68] FARAJI-OSKOUIE M, NOROUZZADEH A, ANSARI R, et al. Bending of Small-Scale Timoshenko Beams Based on the Integral/Differential Nonlocal-Micropolar Elasticity Theory: A Finite Element Approach [J]. Applied Mathematics and Mechanics, 2019, 40(6): 767-782.
[69] RHIF M, BEN ABBES A, FARAH I, et al. Wavelet Transform Application for/in Non-Stationary Time-Series Analysis: A Review [J]. Applied Sciences, 2019, 9(7): 1345
[70] LIEN T V, DUC N T. Crack Identification in Multiple Cracked Beams Made of Functionally Graded Material by Using Stationary Wavelet Transform of Mode Shapes [J]. Vietnam Journal of Mechanics, 2019, 41(2): 105-126.
[71] YANG J C, KIM J O, OH J, et al. Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature [J]. ACS Applied Materials and Interfaces, 2019, 11(21): 19472-19480.
[72] KANG S, LEE J, LEE S, et al. Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Real-Time Tactile Sensing [J]. Advanced Electronic Materials, 2016, 2(12): 1600356.
[73] HE Z, CHEN W, LIANG B, et al. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks [J]. ACS Applied Materials and Interfaces, 2018, 10(15): 12816-12823.
[74] JUNG S, KIM J H, KIM J, et al. Reverse-Micelle-Induced Porous Pressure-Sensitive Rubber for Wearable Human-Machine Interfaces [J]. Advanced Materials, 2014, 26(28): 4825-4830.
[75] HA K H, ZHANG W, JANG H, et al. Highly Sensitive Capacitive Pressure Sensors over a Wide Pressure Range Enabled by the Hybrid Responses of a Highly Porous Nanocomposite [J]. Advanced Materials, 2021, 33(48): e2103320.
[76] KIM D H, JUNG Y, JUNG K, et al. Hollow Polydimethylsiloxane (PDMS) Foam with a 3D Interconnected Network for Highly Sensitive Capacitive Pressure Sensors [J]. Micro and Nano Systems Letters, 2020, 8(1): 1-7.
[77] METZGER C, FLEISCH E, MEYER J, et al. Flexible Foam-Based Capacitive Sensor Arrays for Object Detection at Low Cost [J]. Applied Physics Letters, 2008, 92(1): 013506.
[78] KWON J H, KIM Y M, MOON H C. Porous Ion Gel: A Versatile Ionotronic Sensory Platform for High-Performance, Wearable Ionoskins with Electrical and Optical Dual Output [J]. ACS Nano, 2021, 15(9): 15132-15241.
[79] LIU L, FENG X, CHAKMA A. Unusual Behavior of Poly(ethylene oxide)/AgBF4 Polymer Electrolyte Membranes for Olefin-Paraffin Separation [J]. Separation and Purification Technology, 2004, 38(3): 255-263.
[80] 李刚,刘文锋. 粘弹性阻尼材料的物理机械性能及动态特性模拟 [C]. 第14届全国结构工程学术会议论文集(第三册). 2006: 500-505.
[81] CHORTOS A, BAO Z. Skin-Inspired Electronic Devices [J]. Materials Today, 2014, 17(7): 321-331.
[82] WANG L, FU X, HE J, et al. Application Challenges in Fiber and Textile Electronics [J]. Advanced Materials, 2020, 32(5): e1901971.
[83] SHI J, LIU S, ZHANG L, et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications [J]. Advanced Materials, 2020, 32(5): e1901958.
[84] SEYEDIN S, ZHANG P, NAEBE M, et al. Textile Strain Sensors: A Review of the Fabrication Technologies, Performance Evaluation and Applications [J]. Materials Horizons, 2019, 6(2): 219-249.
[85] HE T, WANG H, WANG J, et al. Self-Sustainable Wearable Textile Nano-Energy Nano-System (NENS) for Next-Generation Healthcare Applications [J]. Advanced Science, 2019, 6(24): 1901437.
[86] HEIDELBERG A N L T, WU B, ET AL. A Generalized Description of the Elastic Properties of Nanowires [J]. Nano Letters, 2006, 6(6): 1101-1106.
[87] INABA K, SAIDA K, GHOSH P, et al. Determination of Young’s Modulus of Carbon Nanofiber Probes Fabricated by the Argon Ion Bombardment of Carbon Coated Silicon Cantilever [J]. Carbon, 2011, 49(13): 4191-4196.
[88] WANG L, QIAO S, KABIRI AMERI S, et al. A Thin Elastic Membrane Conformed to a Soft and Rough Substrate Subjected to Stretching/Compression [J]. Journal of Applied Mechanics, 2017, 84(11): 111003.
[89] WANG Y, HONG T, WANG L, et al. Epidermal Electrodes with Enhanced Breathability and High Sensing Performance [J]. Materials Today Physics, 2020, 12: 100191.
[90] LIU Y, ZHANG J, GAO H, et al. Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes [J]. Nano Letters, 2017, 17(2): 1090-1096.
[91] LIU Q, HUANG J, ZHANG J, et al. Thermal, Waterproof, Breathable, and Antibacterial Cloth with a Nanoporous Structure [J]. ACS Applied Materials and Interfaces, 2018, 10(2): 2026-2032.
[92] CLEMENT J L, JARRETT P S. Antibacterial Silver [J]. Metal-Based Drugs, 1994, 1(5): 467-482.
[93] GONZALEZ GARCIA L E, MACGREGOR M N, VISALAKSHAN R M, et al. Self-Sterilizing Antibacterial Silver-Loaded Microneedles [J]. Chemical Communications, 2018, 55(2): 171-174.
[94] LIU W, GE H, DING X, et al. Cubic Nano-Silver-Decorated Manganese Dioxide Micromotors: Enhanced Propulsion and Antibacterial Performance [J]. Nanoscale, 2020, 12(38): 19655-19664.
[95] MISHRA A K, WALLIN T J, PAN W, et al. Autonomic Perspiration in 3D Printed Hydrogel Actuators [J]. Science Robotics, 2020, 5: eaaz3918.
[96] KIM J, IM S, KIM J H, et al. Artificial Perspiration Membrane by Programmed Deformation of Thermoresponsive Hydrogels [J]. Advanced Materials, 2020, 32(6): e1905901.
[97] LIU X, ZHAO L, MIAO B, et al. Wearable Multiparameter Platform Based on AlGaN/GaN High‐Electron-Mobility Transistors for Real-Time Monitoring of pH and Potassium Ions in Sweat [J]. Electroanalysis, 2019, 32(2): 422-428.
[98] KEENE S T, FOGARTY D, COOKE R, et al. Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration [J]. Advanced Healthcare Materials, 2019, 8(24): e1901321.
[99] WANG S, JIANG Y, TAI H, et al. An Integrated Flexible Self-Powered Wearable Respiration Sensor [J]. Nano Energy, 2019, 63: 103829.
[100] LI B, XIAO G, LIU F, et al. A Flexible Humidity Sensor Based on Silk Fabrics for Human Respiration Monitoring [J]. Journal of Materials Chemistry C, 2018, 6(16): 4549-4554.
[101] NICHOLS W W. Clinical Measurement of Arterial Stiffness Obtained from Noninvasive Pressure Waveforms [J]. American Journal of Hypertension, 2005, 18: 3S-10S.
[102] YOU M, JANG T, CHA S, et al. Realistic Paint Simulation Based on Fluidity, Diffusion, and Absorption [J]. Computer Animation and Virtual Worlds, 2013, 24: 297-306.
[103] GUO M-Z, MAURY-RAMIREZ A, POON C S. Self-Cleaning Ability of Titanium Dioxide Clear Paint Coated Architectural Mortar and Its Potential in Field Application [J]. Journal of Cleaner Production, 2016, 112: 3583-3588.
[104] BA C, ECONOMY J. Preparation of PMDA/ODA Polyimide Membrane for Use as Substrate in a Thermally Stable Composite Reverse Osmosis Membrane [J]. Journal of Membrane Science, 2010, 363(1-2): 140-148.
[105] HEGDE M, MEENAKSHISUNDARAM V, CHARTRAIN N, et al. 3D Printing All-Aromatic Polyimides Using Mask-Projection Stereolithography: Processing the Nonprocessable [J]. Advanced Materials, 2017, 29(31): 1701240.
[106] LEE S J, CHOI M-C, PARK S S, et al. Synthesis and Characterization of Hybrid Films of Polyimide and Silica Hollow Spheres [J]. Macromolecular Research, 2011, 19(6): 599-607.
[107] YANG J, LUO S, ZHOU X, et al. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes [J]. ACS Applied Materials and Interfaces, 2019, 11(16): 14997-15006.
[108] XIONG Y, SHEN Y, TIAN L, et al. A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring [J]. Nano Energy, 2020, 70: 104436.
[109] YUK H, VARELA C E, NABZDYK C S, et al. Dry Double-Sided Tape for Adhesion of Wet Tissues and Devices [J]. Nature, 2019, 575: 169-174.
[110] HE Y, ZHU B, INOUE Y. Hydrogen Bonds in Polymer Blends [J]. Progress in Polymer Science, 2004, 29(10): 1021-1051.
[111] YUK H, ZHANG T, LIN S, et al. Tough Bonding of Hydrogels to Diverse Non-Porous Surfaces [J]. Nature Materials, 2016, 15(2): 190-196.
[112] LIAW D-J, WANG K-L, HUANG Y-C, et al. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications [J]. Progress in Polymer Science, 2012, 37(7): 907-974.
[113] YI C, LI W, SHI S, et al. High-Temperature-Resistant and Colorless Polyimide: Preparations, Properties, and Applications [J]. Solar Energy, 2020, 195: 340-354.
[114] WANG H, ZHU D, ZHOU W, et al. High Temperature Electromagnetic and Microwave Absorbing Properties of Polyimide/Multi-Walled Carbon Nanotubes Nancomposites [J]. Chemical Physics Letters, 2015, 633: 223-228.
[115] SHALU, CHAURASIA S K, SINGH R K, et al. Thermal Stability, Complexing Behavior, and Ionic Transport of Polymeric Gel Membranes Based on Polymer PVDF-HFP and Ionic Liquid, [BMIM][BF4] [J]. Journal of Physical Chemistry B, 2013, 117(3): 897-906.
[116] CHANG W-Y, FANG T-H, LIN Y-C. Physical Characteristics of Polyimide Films for Flexible Sensors [J]. Applied Physics A, 2008, 92(3): 693-701.
[117] DAVIDSON J K, SHAH J J. Geometric Tolerances: A New Application for Line Geometry and Screws [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 216(1): 95-103.
[118] 刘超华,林亚军,王述运. 基于机器视觉高空飞机螺栓松动监测仿真 [J]. 计算机仿真, 2014, 31(12): 84-87.
[119] LI T, LUO H, QIN L, et al. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer [J]. Small, 2016, 12(36): 5042-5048.
[120] LU P, WANG L, ZHU P, et al. Iontronic Pressure Sensor with High Sensitivity and Linear Response over a Wide Pressure Range Based on Soft Micropillared Electrodes [J]. Science Bulletin, 2021, 66(11): 1091-1100.
[121] LU L, DING W, LIU J, et al. Flexible PVDF Based Piezoelectric Nanogenerators [J]. Nano Energy, 2020, 78: 105251.
[122] YOUSRY Y M, YAO K, MOHAMED A M, et al. Theoretical Model and Outstanding Performance from Constructive Piezoelectric and Triboelectric Mechanism in Electrospun PVDF Fiber Film [J]. Advanced Functional Materials, 2020, 30(25): 1910592.
[123] SUN J, HE C, YAO X, et al. Hierarchical Composite‐Solid‐Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultra‐Stable Lithium Batteries [J]. Advanced Functional Materials, 2020, 31(1): 2006381.
[124] YANO H, SUGIYAMA J, NAKAGAITO A N, et al. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers [J]. Advanced Materials, 2005, 17(2): 153-155.
[125] ZHU M, SONG J, LI T, et al. Highly Anisotropic, Highly Transparent Wood Composites [J]. Advanced Materials, 2016, 28(26): 5181-5187.
[126] GU M, ZHANG J, WANG X, et al. Formation of Poly(vinylidene fluoride) (PVDF) Membranes via Thermally Induced Phase Separation [J]. Desalination, 2006, 192: 160-167.
[127] SU Y, CHEN C, LI Y, et al. PVDF Membrane Formation via Thermally Induced Phase Separation [J]. Journal of Macromolecular Science, Part A, 2007, 44(1): 99-104.
[128] MIE G. Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen [J]. Annalen der Physik, 1908, 330(3): 377-445.
[129] ZHANG X, TURPIN B J, MCMURRY P H, et al. Mie Theory Evaluation of Species Contributions to 1990 Wintertime Visibility Reduction in the Grand Canyon [J]. Air and Waste, 1994, 44(2): 153-162.
[130] MARCOS A, GELESKY C W S, LUCAS FOPPA, et al. Metal Nanoparticle/Ionic Liquid/Cellulose: New Catalytically Active Membrane Materials for Hydrogenation Reactions [J]. Biomacromolecules, 2009, 10: 1888-1893.
[131] PENG N, JU Y, LV R, et al. Toughening Biodegradable Polylactide with Nanopores [J]. Journal of Polymer Research, 2016, 23(12): 1-6.
[132] JUN S, JU B-K, KIM J-W. Ultra-Facile Fabrication of Stretchable and Transparent Capacitive Sensor Employing Photo-Assisted Patterning of Silver Nanowire Networks [J]. Advanced Materials Technologies, 2016, 1(6): 1600062.
[133] KIM S R, KIM J H, PARK J W. Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks [J]. ACS Applied Materials and Interfaces, 2017, 9(31): 26407-26416.
[134] LI B, YE S, STEWART I E, et al. Synthesis and Purification of Silver Nanowires to Make Conducting Films with a Transmittance of 99% [J]. Nano Letters, 2015, 15(10): 6722-6726.
[135] LIU Y, HU Y, ZHAO J, et al. Self-Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities [J]. Small, 2016, 12(36): 5074-5080.
[136] BOUTRY C M, NGUYEN A, LAWAL Q O, et al. A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring [J]. Advanced Materials, 2015, 27(43): 6954-6961.
[137] XU W, HUANG M-C, AMINI N, et al. Ecushion: A Textile Pressure Sensor Array Design and Calibration for Sitting Posture Analysis [J]. IEEE Sensors Journal, 2013, 13(10): 3926-3934.
[138] TIEN N T, JEON S, KIM D I, et al. A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature [J]. Advanced Materials, 2014, 26(5): 796-804.
[139] ZHENG Y Q, LIU Y, ZHONG D, et al. Monolithic Optical Microlithography of High Densityelastic Circuits [J]. Science, 2021, 373(6550): 88-94.
[140] OH J Y, SON D, KATSUMATA T, et al. Stretchable Self Healable Semiconducting Polymer Film for Active-Matrix Strain-Sensing Array [J]. Science Advances, 2019, 5(11): eaav3097.
[141] JEON S-B, PARK S-J, KIM W-G, et al. Self-Powered Wearable Keyboard with Fabric Based Triboelectric Nanogenerator [J]. Nano Energy, 2018, 53: 596-603.
[142] SHI R, LOU Z, CHEN S, et al. Flexible and Transparent Capacitive Pressure Sensor with Patterned Microstructured Composite Rubber Dielectric for Wearable Touch Keyboard Application [J]. Science China Materials, 2018, 61(12): 1587-1595.
[143] AIELLO C, CATERINO N, MADDALONI G, et al. Experimental and Numerical Investigation of Cyclic Response of a Glass Curtain Wall for Seismic Performance Assessment [J]. Construction and Building Materials, 2018, 187: 596-609.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
TP212.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/352522
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
刘庆先. 基于复合多孔结构的离-电式柔性压力传感器[D]. 深圳. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849521-刘庆先-力学与航空航天(10528KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘庆先]的文章
百度学术
百度学术中相似的文章
[刘庆先]的文章
必应学术
必应学术中相似的文章
[刘庆先]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。