中文版 | English
题名

基于贯通结构的黏附性、可拉伸高密度电 极制备及应用研究

其他题名
PREPARATION AND APPLICATION OF ADHESIVE AND STRETCHABLE HIGH DENSITY ELECTRODE BASED ON THROUGH STRUCTURE
姓名
姓名拼音
LU Zechao
学号
12032279
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
刘志远
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2022-05-12
论文提交日期
2022-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

目前,用于记录和采集高密度肌肉信号的电极阵列是诊断肌肉疾病、评 估运动意图和驱动假肢急需的工具。用于高密度电生理信号采集的电极形式 主要是商用高密度聚酰亚胺电极贴或通过贴附多个单点式商用 Ag/AgCl 凝 胶电极,其中高密度聚酰亚胺电极虽然具有一定的柔性,但不具备可拉伸性, 由于与皮肤的模量不匹配,贴合性较差,容易在运动监测过程中发生脱附, 在皮肤处于大的拉伸形变过程中产生运动伪影,而单点式商用 Ag/AgCl 凝胶 电极的外形尺寸较大、厚度较厚,很难与检测设备进行高密度集成。为了实 现稳定的高密度生理电信号的获取,解决上述商用电极贴集成度低、与皮肤 模量不匹配和贴合性差等问题,本论文制备了一种基于贯通结构具有一定黏 附性的柔性可拉伸高密度电极,该电极可以同时获取人体体表多个监测点的 肌电信号。

主要的研究内容如下:

(1)采用磁控溅射的制备方法,获得了金属材料与柔性基底的复合导 电薄膜电极,分析了导电金属薄膜在柔性可拉伸基底不同拉伸状态下的微观 形态,并对柔性可拉伸电极的拉伸导电性、循环稳定性、透气性能等进行了 表征测试与分析。通过贯通孔状结构的设计可以借助商用导电凝胶实现柔性 可拉伸电极的导电线路与皮肤的连接导通,透明敷料贴自身的黏附性可以保 证电极即使在大的拉伸变形下依然保持与皮肤良好的共形贴合,有利于电学 信号的稳定传输。

(2)对柔性可拉伸电极和硬质 PCB 板连接处的软硬接口界面的性能进 行了测试与分析,通过对比两种不同软硬接口拉伸状态下的微观形貌,发现 薄膜梯度法可以明显的分散软硬接口处的应力集中问题,提升软硬接口可承 受的最大拉伸极限。

(3)通过制备得到具有贯通结构的黏附性、柔性可拉伸高密度电极, 将其应用于对不同手势和不同握力下的手臂肌电信号的采集,并通过与商用 Ag/AgCl 凝胶电极采集的信号进行对比,分析信号的幅值与信噪比,验证了 该电极在未来医学检测领域的可行性。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1]WAGNER S, LACOUR S P, JONES J, et al. Electronic skin: Architecture and components[J]. Physica E-Low-Dimensional Systems & Nanostructures, 2004, 25(2-3): 326-334.
[2]HUANG S, LIU Y, ZHAO Y, et al. Flexible electronics: Stretchable electrodes and their future[J]. Advanced Functional Materials, 2019, 29(6): 1805924.
[3]JI S, WAN C, WANG T, et al. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring[J]. Advanced Materials, 2020, 32(26): 2001496.
[4]TANG D, YU Z, HE Y, et al. Strain-insensitive elastic surface electromyographic (sEMG) electrode for efficient recognition of exercise intensities[J]. Micromachines, 2020, 11(3): 239.
[5]ROBERTS T, DE GRAAF J B, NICOL C, et al. Flexible inkjet-printed multielectrode arrays for neuromuscular cartography[J]. Advanced Healthcare Materials, 2016, 5(12): 1462-1470.
[6]CHEN K, GAO W, EMAMINEJAD S, et al. Printed carbon nanotube electronics and sensor systems[J]. Advanced Materials, 2016, 28(22): 4397-4414.
[7]HE F, YOU X, WANG W, et al. Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications[J]. Small Methods, 2021, 5(3): 2001041.
[8]LOU Z, CHEN S, WANG L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics[J]. Nano Energy, 2017, 38: 28-35.
[9]DU X, JIANG W, ZHANG Y, et al. Transparent and stretchable graphene electrode by intercalation dopineg for epidermal electrophysiology[J]. Acs Applied Materials & Interfaces, 2020, 12(50): 56361-56371.
[10]LOPES P A, VAZ GOMES D, GREEN MARQUES D, et al. Soft bioelectronic stickers: Selection and evaluation of skin-interfacing electrodes[J]. Advanced Healthcare Materials, 2019, 8(15): 1900234.
[11]LI G, WU J, XIA Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites[J]. Journal of Neural Engineering, 2020, 17(2): 026001.
[12]SAADATNIA Z, MOSANENZADEH S G, CHIN M M, et al. Flexible, air dryable, and fiber modified aerogel-based wet electrode for electrophysiological monitoring[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(6): 1820-1827.
[13]JORGE M, HULL M L. Analysis of EMG measurements during bicycle pedaling[J]. Journal of Biomechanics, 1986, 19(9): 683-694.
[14]LEE S, KIM M-O, KANG T, et al. Knit band sensor for myoelectric control of surface EMG-Based prosthetic hand[J]. IEEE Sensors Journal, 2018, 18(20): 8578-8586.
[15]LI W, SAKAMOTO K. Distribution of muscle fiber conduction velocity of M. biceps brachii during voluntary isometric contraction with use of surface array electrodes[J]. Applied Human Science, 1996, 15(1): 41-53.
[16]LORUSSI F, CARBONARO N, DE ROSSI D, et al. Wearable textile platform for assessing stroke patient treatment in daily life conditions[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 28.
[17]LYNN S K, WATKINS C M, WONG M A, et al. Validity and reliability of surface electromyography measurements from a wearable athlete performance system[J]. Journal of Sports Science and Medicine, 2018, 17(2): 205-215.
[18]MAJUMDER S, MONDAL T, DEEN M J. Wearable sensors for remote health monitoring[J]. Sensors, 2017, 17(1): 130.
[19]LAPATKI B G, DIJK J P V, JONAS I E, et al. A thin, flexible multielectrode grid for high-density surface EMG[J]. Journal of Applied Physiology, 2004, 96(1): 327-336.
[20]WANG Y, YIN L, BAI Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale[J]. Science Advances, 2020, 6(43): 0996.
[21]LEE T-W, JEONG Y G. Regenerated cellulose/multiwalled carbon nanotube composite films with efficient electric heating performance[J]. Carbohydrate Polymers, 2015, 133: 456-463.
[22]LI G, WANG S, DUAN Y Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting[J]. Sensors and Actuators B-Chemical, 2018, 277: 250-260.
[23]LI G, WU J, XIA Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites[J]. Journal of Neural Engineering, 2020, 17(2):
[24]KOH A, KANG D, XUE Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat[J]. Science Translational Medicine, 2016, 8(366): 165.
[25]LAI J, ZHOU H, WANG M, et al. Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors[J]. Journal of Materials Chemistry C, 2018, 6(48): 13316-13324.
[26]LEE H, HONG Y J, BAIK S, et al. Enzyme-based glucose sensor: From invasive to wearable device[J]. Advanced Healthcare Materials, 2018, 7(8): 1701150.
[27]LEE H-R, KIM C-C, SUN J-Y. Stretchable ionics - A promising candidate for upcoming wearable devices[J]. Advanced Materials, 2018, 30(42): 1704403.
[28]LIAO Q, SU X, ZHU W, et al. Flexible and durable cellulose aerogels for highly effective oil/water separation[J]. RSC Advances, 2016, 6(68): 63773-63781.
[29]LIM H-R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): 1901924.
[30]LIU C-Y, CHEN S-P, XU L, et al. Humidity sensitive cellulose composite aerogels with enhanced mechanical performance[J]. Cellulose, 2020, 27(11): 6287-6297.
[31]PAN S, ZHANG F, CAI P, et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics[J]. Advanced Functional Materials, 2020, 30(29): 1909540.
[32]SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560.
[33]MIERES J H, SHAW L J, ARAI A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease - Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association[J]. Circulation, 2005, 111(5): 682-696.
[34]MINEV I R, MUSIENKO P, HIRSCH A, et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 2015, 347(6218): 159-163.
[35]MISHRA S, NORTON J J S, LEE Y, et al. Soft, conformal bioelectronics for a wireless human-wheelchair interface[J]. Biosensors & Bioelectronics, 2017, 91: 796-803.
[36]MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Nanotechnology, 2017, 12(9): 907-913.
[37]MOIN A, ZHOU A, RAHIMI A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition[J]. Nature Electronics, 2021, 4(1): 54-63.
[38]MORIKAWA Y, YAMAGIWA S, SAWAHATA H, et al. Ultrastretchable kirigami bioprobes[J]. Advanced Healthcare Materials, 2018, 7(3): 1701100.
[39]MOSES D A, LEONARD M K, MAKIN J G, et al. Real-time decoding of question-and-answer speech dialogue using human cortical activity[J]. Nature Communications, 2019, 10(1): 3096.
[40]LUAN L, WEI X, ZHAO Z, et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration[J]. Science Advances, 2017, 3(2): 1601966.
[41]NAWROCKI R A, JIN H, LEE S, et al. Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials[J]. Advanced Functional Materials, 2018, 28(36): 1803279.
[42]CHOI S, HAN S I, JUNG D, et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056.
[43]LIANG X P, LI H F, DOU J X, et al. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics[J]. Advanced Materials, 2020, 32(31): 2000165.
[44]WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.
[45]LI Z, GUO W, HUANG Y Y, et al. On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces[J]. Carbon, 2020, 164: 164-170.
[46]REYES B A, POSADA-QUINTERO H F, BALES J R, et al. Novel electrodes for underwater ECG monitoring[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(6): 1863-1876.
[47]GEIM A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[48]SUN Y Y, YANG L W, XIA K L, et al. "Snowing" graphene using microwave ovens[J]. Advanced Materials, 2018, 30(40): 1803189.
[49]CELIK N, MANIVANNAN N, STRUDWICK A, et al. Graphene-enabled electrodes for electrocardiogram monitoring[J]. Nanomaterials, 2016, 6(9): 156.
[50]QIAO Y, LI X, WANG J, et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort[J]. Small, 2022, 18(7): 2104810.
[51]HU K S, KULKARNI D D, CHOI I, et al. Graphene-polymer nanocomposites for structural and functional applications[J]. Progress in Polymer Science, 2014, 39(11): 1934-1972.
[52]HO D H, SUN Q, KIM S Y, et al. Stretchable and multimodal all graphene electronic skin[J]. Advanced Materials, 2016, 28(13): 2601-2608.
[53]GUO J H, YU Y R, CAI L J, et al. Microfluidics for flexible electronics[J]. Materials Today, 2021, 44: 105-135.
[54]CHIANG C K, FINCHER C R, PARK Y W, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17): 1098-1101.
[55]ZHU M, WANG H, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021, 10(17): 2100646.
[56]SHAKTAWAT V, JAIN N, SAXENA R, et al. Temperature dependence of electrical conduction in pure and doped polypyrrole[J]. Polymer Bulletin, 2006, 57(4): 535-543.
[57]GRECO F, ZUCCA A, TACCOLA S, et al. Ultra-thin conductive free-standing PEDOT/PSS nanofilms[J]. Soft Matter, 2011, 7(22): 10642-10650.
[58]GUO J, YU Y, WANG H, et al. Conductive polymer hydrogel microfibers from multiflow microfluidics[J]. Small, 2019, 15(15): 1805162.
[59]LUO S-C, YU H-H, WAN A C A, et al. A general synthesis for PEDOT-Coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization[J]. Small, 2008, 4(11): 2051-2058.
[60]ZHU J, YANG X, SHENG J, et al. Double-layered PEDOT:PSS films inducing strong inversion layers in organic/silicon hybrid heterojunction solar cells[J]. ACS Applied Energy Materials, 2018, 1(6): 2874-2881.
[61]TAKANO T, MASUNAGA H, FUJIWARA A, et al. PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films[J]. Macromolecules, 2012, 45(9): 3859-3865.
[62]VELASCO-BOSOM S, KARAM N, CARNICER-LOMBARTE A, et al. Conducting polymer-ionic liquid electrode arrays for high-density surface electromyography[J]. Advanced Healthcare Materials, 2021, 10(17): 2100374.
[63]ZWARTS M J, STEGEMAN D F. Multichannel surface EMG: Basic aspects and clinical utility[J]. Muscle & Nerve, 2003, 28(1): 1-17.
[64]REN L, JIANG Q, CHEN Z P, et al. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring[J]. Sensors and Actuators a-Physical, 2017, 268: 38-45.
[65]KIM M, KIM T, KIM D S, et al. Curved microneedle array-based sEMG electrode for robust long-term measurements and high selectivity[J]. Sensors, 2015, 15(7): 16265-16280.
[66]BAREKET L, INZELBERG L, RAND D, et al. Temporary-tattoo for long-term high fidelity biopotential recordings[J]. Scientific Reports, 2016, 6(1): 25727.
[67]ZHU M, ZHANG H, WANG X, et al. Towards optimizing electrode configurations for silent speech recognition based on high-density surface electromyography[J]. Journal of Neural Engineering, 2021, 18(1): 016005.
[68]KIM N, LIM T, SONG K, et al. Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 21070-21076.
[69]ZHU M, SAMUEL O W, YANG Z, et al. Using muscle synergy to evaluate the neck muscular activities during normal swallowing; proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), F 18-21 July 2018, 2018 [C].

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/352523
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
卢泽超. 基于贯通结构的黏附性、可拉伸高密度电 极制备及应用研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032279-卢泽超-中国科学院深圳(4781KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[卢泽超]的文章
百度学术
百度学术中相似的文章
[卢泽超]的文章
必应学术
必应学术中相似的文章
[卢泽超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。