[1]WAGNER S, LACOUR S P, JONES J, et al. Electronic skin: Architecture and components[J]. Physica E-Low-Dimensional Systems & Nanostructures, 2004, 25(2-3): 326-334.
[2]HUANG S, LIU Y, ZHAO Y, et al. Flexible electronics: Stretchable electrodes and their future[J]. Advanced Functional Materials, 2019, 29(6): 1805924.
[3]JI S, WAN C, WANG T, et al. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring[J]. Advanced Materials, 2020, 32(26): 2001496.
[4]TANG D, YU Z, HE Y, et al. Strain-insensitive elastic surface electromyographic (sEMG) electrode for efficient recognition of exercise intensities[J]. Micromachines, 2020, 11(3): 239.
[5]ROBERTS T, DE GRAAF J B, NICOL C, et al. Flexible inkjet-printed multielectrode arrays for neuromuscular cartography[J]. Advanced Healthcare Materials, 2016, 5(12): 1462-1470.
[6]CHEN K, GAO W, EMAMINEJAD S, et al. Printed carbon nanotube electronics and sensor systems[J]. Advanced Materials, 2016, 28(22): 4397-4414.
[7]HE F, YOU X, WANG W, et al. Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications[J]. Small Methods, 2021, 5(3): 2001041.
[8]LOU Z, CHEN S, WANG L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics[J]. Nano Energy, 2017, 38: 28-35.
[9]DU X, JIANG W, ZHANG Y, et al. Transparent and stretchable graphene electrode by intercalation dopineg for epidermal electrophysiology[J]. Acs Applied Materials & Interfaces, 2020, 12(50): 56361-56371.
[10]LOPES P A, VAZ GOMES D, GREEN MARQUES D, et al. Soft bioelectronic stickers: Selection and evaluation of skin-interfacing electrodes[J]. Advanced Healthcare Materials, 2019, 8(15): 1900234.
[11]LI G, WU J, XIA Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites[J]. Journal of Neural Engineering, 2020, 17(2): 026001.
[12]SAADATNIA Z, MOSANENZADEH S G, CHIN M M, et al. Flexible, air dryable, and fiber modified aerogel-based wet electrode for electrophysiological monitoring[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(6): 1820-1827.
[13]JORGE M, HULL M L. Analysis of EMG measurements during bicycle pedaling[J]. Journal of Biomechanics, 1986, 19(9): 683-694.
[14]LEE S, KIM M-O, KANG T, et al. Knit band sensor for myoelectric control of surface EMG-Based prosthetic hand[J]. IEEE Sensors Journal, 2018, 18(20): 8578-8586.
[15]LI W, SAKAMOTO K. Distribution of muscle fiber conduction velocity of M. biceps brachii during voluntary isometric contraction with use of surface array electrodes[J]. Applied Human Science, 1996, 15(1): 41-53.
[16]LORUSSI F, CARBONARO N, DE ROSSI D, et al. Wearable textile platform for assessing stroke patient treatment in daily life conditions[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 28.
[17]LYNN S K, WATKINS C M, WONG M A, et al. Validity and reliability of surface electromyography measurements from a wearable athlete performance system[J]. Journal of Sports Science and Medicine, 2018, 17(2): 205-215.
[18]MAJUMDER S, MONDAL T, DEEN M J. Wearable sensors for remote health monitoring[J]. Sensors, 2017, 17(1): 130.
[19]LAPATKI B G, DIJK J P V, JONAS I E, et al. A thin, flexible multielectrode grid for high-density surface EMG[J]. Journal of Applied Physiology, 2004, 96(1): 327-336.
[20]WANG Y, YIN L, BAI Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale[J]. Science Advances, 2020, 6(43): 0996.
[21]LEE T-W, JEONG Y G. Regenerated cellulose/multiwalled carbon nanotube composite films with efficient electric heating performance[J]. Carbohydrate Polymers, 2015, 133: 456-463.
[22]LI G, WANG S, DUAN Y Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting[J]. Sensors and Actuators B-Chemical, 2018, 277: 250-260.
[23]LI G, WU J, XIA Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites[J]. Journal of Neural Engineering, 2020, 17(2):
[24]KOH A, KANG D, XUE Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat[J]. Science Translational Medicine, 2016, 8(366): 165.
[25]LAI J, ZHOU H, WANG M, et al. Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors[J]. Journal of Materials Chemistry C, 2018, 6(48): 13316-13324.
[26]LEE H, HONG Y J, BAIK S, et al. Enzyme-based glucose sensor: From invasive to wearable device[J]. Advanced Healthcare Materials, 2018, 7(8): 1701150.
[27]LEE H-R, KIM C-C, SUN J-Y. Stretchable ionics - A promising candidate for upcoming wearable devices[J]. Advanced Materials, 2018, 30(42): 1704403.
[28]LIAO Q, SU X, ZHU W, et al. Flexible and durable cellulose aerogels for highly effective oil/water separation[J]. RSC Advances, 2016, 6(68): 63773-63781.
[29]LIM H-R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): 1901924.
[30]LIU C-Y, CHEN S-P, XU L, et al. Humidity sensitive cellulose composite aerogels with enhanced mechanical performance[J]. Cellulose, 2020, 27(11): 6287-6297.
[31]PAN S, ZHANG F, CAI P, et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics[J]. Advanced Functional Materials, 2020, 30(29): 1909540.
[32]SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560.
[33]MIERES J H, SHAW L J, ARAI A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease - Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association[J]. Circulation, 2005, 111(5): 682-696.
[34]MINEV I R, MUSIENKO P, HIRSCH A, et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 2015, 347(6218): 159-163.
[35]MISHRA S, NORTON J J S, LEE Y, et al. Soft, conformal bioelectronics for a wireless human-wheelchair interface[J]. Biosensors & Bioelectronics, 2017, 91: 796-803.
[36]MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Nanotechnology, 2017, 12(9): 907-913.
[37]MOIN A, ZHOU A, RAHIMI A, et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition[J]. Nature Electronics, 2021, 4(1): 54-63.
[38]MORIKAWA Y, YAMAGIWA S, SAWAHATA H, et al. Ultrastretchable kirigami bioprobes[J]. Advanced Healthcare Materials, 2018, 7(3): 1701100.
[39]MOSES D A, LEONARD M K, MAKIN J G, et al. Real-time decoding of question-and-answer speech dialogue using human cortical activity[J]. Nature Communications, 2019, 10(1): 3096.
[40]LUAN L, WEI X, ZHAO Z, et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration[J]. Science Advances, 2017, 3(2): 1601966.
[41]NAWROCKI R A, JIN H, LEE S, et al. Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials[J]. Advanced Functional Materials, 2018, 28(36): 1803279.
[42]CHOI S, HAN S I, JUNG D, et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056.
[43]LIANG X P, LI H F, DOU J X, et al. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics[J]. Advanced Materials, 2020, 32(31): 2000165.
[44]WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.
[45]LI Z, GUO W, HUANG Y Y, et al. On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces[J]. Carbon, 2020, 164: 164-170.
[46]REYES B A, POSADA-QUINTERO H F, BALES J R, et al. Novel electrodes for underwater ECG monitoring[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(6): 1863-1876.
[47]GEIM A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[48]SUN Y Y, YANG L W, XIA K L, et al. "Snowing" graphene using microwave ovens[J]. Advanced Materials, 2018, 30(40): 1803189.
[49]CELIK N, MANIVANNAN N, STRUDWICK A, et al. Graphene-enabled electrodes for electrocardiogram monitoring[J]. Nanomaterials, 2016, 6(9): 156.
[50]QIAO Y, LI X, WANG J, et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort[J]. Small, 2022, 18(7): 2104810.
[51]HU K S, KULKARNI D D, CHOI I, et al. Graphene-polymer nanocomposites for structural and functional applications[J]. Progress in Polymer Science, 2014, 39(11): 1934-1972.
[52]HO D H, SUN Q, KIM S Y, et al. Stretchable and multimodal all graphene electronic skin[J]. Advanced Materials, 2016, 28(13): 2601-2608.
[53]GUO J H, YU Y R, CAI L J, et al. Microfluidics for flexible electronics[J]. Materials Today, 2021, 44: 105-135.
[54]CHIANG C K, FINCHER C R, PARK Y W, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17): 1098-1101.
[55]ZHU M, WANG H, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021, 10(17): 2100646.
[56]SHAKTAWAT V, JAIN N, SAXENA R, et al. Temperature dependence of electrical conduction in pure and doped polypyrrole[J]. Polymer Bulletin, 2006, 57(4): 535-543.
[57]GRECO F, ZUCCA A, TACCOLA S, et al. Ultra-thin conductive free-standing PEDOT/PSS nanofilms[J]. Soft Matter, 2011, 7(22): 10642-10650.
[58]GUO J, YU Y, WANG H, et al. Conductive polymer hydrogel microfibers from multiflow microfluidics[J]. Small, 2019, 15(15): 1805162.
[59]LUO S-C, YU H-H, WAN A C A, et al. A general synthesis for PEDOT-Coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization[J]. Small, 2008, 4(11): 2051-2058.
[60]ZHU J, YANG X, SHENG J, et al. Double-layered PEDOT:PSS films inducing strong inversion layers in organic/silicon hybrid heterojunction solar cells[J]. ACS Applied Energy Materials, 2018, 1(6): 2874-2881.
[61]TAKANO T, MASUNAGA H, FUJIWARA A, et al. PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films[J]. Macromolecules, 2012, 45(9): 3859-3865.
[62]VELASCO-BOSOM S, KARAM N, CARNICER-LOMBARTE A, et al. Conducting polymer-ionic liquid electrode arrays for high-density surface electromyography[J]. Advanced Healthcare Materials, 2021, 10(17): 2100374.
[63]ZWARTS M J, STEGEMAN D F. Multichannel surface EMG: Basic aspects and clinical utility[J]. Muscle & Nerve, 2003, 28(1): 1-17.
[64]REN L, JIANG Q, CHEN Z P, et al. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring[J]. Sensors and Actuators a-Physical, 2017, 268: 38-45.
[65]KIM M, KIM T, KIM D S, et al. Curved microneedle array-based sEMG electrode for robust long-term measurements and high selectivity[J]. Sensors, 2015, 15(7): 16265-16280.
[66]BAREKET L, INZELBERG L, RAND D, et al. Temporary-tattoo for long-term high fidelity biopotential recordings[J]. Scientific Reports, 2016, 6(1): 25727.
[67]ZHU M, ZHANG H, WANG X, et al. Towards optimizing electrode configurations for silent speech recognition based on high-density surface electromyography[J]. Journal of Neural Engineering, 2021, 18(1): 016005.
[68]KIM N, LIM T, SONG K, et al. Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 21070-21076.
[69]ZHU M, SAMUEL O W, YANG Z, et al. Using muscle synergy to evaluate the neck muscular activities during normal swallowing; proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), F 18-21 July 2018, 2018 [C].
修改评论