中文版 | English
题名

热力作用下多孔介质圆柱绕流和传热特性的数值研究

其他题名
A NUMERICAL STUDY OF FLOW AND HEAT TRANSFER PAST AND THROUGH A POROUS CYLINDER UNDER THERMAL FORCING
姓名
姓名拼音
YU Shimin
学号
11849524
学位类型
博士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
余鹏
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-19
论文提交日期
2022-07-07
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

多孔介质钝体绕流与对流换热广泛存在于自然界和生物工程、能源与化工、航空航天、核工程和海洋工程等工程领域,涉及多孔介质内部及周围复杂流动与传热等基础性问题,因此,对多孔介质钝体相关流动和传热的深入研究具有重要的学术意义和工程应用价值。虽然学术界对此类问题的研究逐渐增多,但对多孔介质圆柱绕流和混合对流换热的研究仍不够完善,其所蕴含关于流动和传热的物理机制仍不是很清晰。本文基于有限体积法,较为系统地研究和分析了热力作用下具有内热源的多孔介质圆柱的稳态绕流和混合对流换热问题。本文的主要研究工作和结论简述如下:

考虑辅助热力(当热浮力方向与来流方向相同时,此时流动所受到的热浮力叫作辅助热力)影响,本文研究了多孔圆柱的混合对流传热问题,探讨了辅助热力作用下多孔圆柱后部尾迹区涡产生与消失的机理,得到了不同无量纲物理参数下尾涡存在与消失的分岔图,并与实心圆柱绕流中尾涡结构变化和传热性能进行了对比分析,探讨了多孔圆柱的阻力系数计算方法。结果表明,多孔圆柱后部尾涡的存在方式包括渗入尾涡和脱离尾涡两种,达西数和辅助热力对尾涡的产生均具有抑制作用,对尾涡的消失均具有促进作用。相比实心圆柱,多孔圆柱后部尾涡在较大雷诺数下产生,在较小热力作用时消失。尾涡的形成和消失与圆柱内部渗流和周围流动以及涡量的产生与衰减密切相关。与实心圆柱相比,多孔圆柱的传热性能得到了显著提高,在较大达西数和较强热力作用时提升效果更为显著。由于多孔自身的阻碍作用使得流体穿过多孔圆柱时存在动量损失,相比表面积分法,采用控制体积法得到的圆柱表面阻力系数更为准确。

本文探索了在辅助热力作用下普朗特数对多孔圆柱流动和传热的影响,得到了不同普朗特数下尾涡存在的分岔图,并分析了不同普朗特数下等温线的结构分布情况以及传热机制。结果表明,普朗特数的增加一方面削弱了多孔圆柱内部和周围流动,促使了尾涡的产生和发展,随着普朗特数增加,尾涡产生的临界雷诺数减小。另一方面,在一定程度上,普朗特数的增加也削弱了辅助热力对流动的影响。普朗特数对温度分布的影响显著,它的增加促使了圆柱后部等温线出现卷曲且高低起伏类似凹状或者马鞍状的结构,其整体结构大小与圆柱后部尾涡的大小大致相同,且其整体长度与尾涡长度也几乎一致,这种结构使得等温线较为密集地分布在圆柱后部,有利于传热。普朗特数的增加使得圆柱周围的热边界层厚度明显变薄,再加上此时温度沿下游方向衰减得较快,热量向下游扩散得较快,从而增强了传热。

考虑来流方向和热力的相互作用,本文研究了多孔圆柱的尾涡特性和传热性能,探讨了流场和尾涡非对称分布的机理。研究结果表明,在来流方向和热力双重作用下尾涡结构呈现多样性分布。当来流方向与热力方向不一致时,整体尾涡结构不再总是关于水平轴线对称,而是由上下结构不一的两部分涡组成。在不同物理参数下,上下两部分涡的变化情况不同。来流方向角对尾涡非对称性的影响取决于达西数和热力的大小,达西数的增加使得非对称性先减小后增加,热力强度的增加则使得尾涡非对称性愈加显著。在所研究的物理参数范围内,整个流场可能会经历两到三种尾涡的发展形态,包括双涡结构、单涡结构和无涡状态。尾涡结构的这一系列变化跟圆柱周围的流体速度和圆柱后部的出口速度以及涡量分布有关,而其非对称性的主要原因源于垂直于来流方向的热力分量的影响。热力的这一分量使得流体在垂直于来流方向上也有受力。来流方向角的增大使得传热性能降低。热力具有增强或减弱传热的双重作用,这取决于来流方向角大小。当来流方向垂直于热力方向时,热力使得传热减弱。当其他条件一定时,辅助热力情形下的传热性能最好。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Derakhshandeh J, Alam M M. A review of bluff body wakes [J]. Ocean Engineering, 2019, 182: 475-88.
[2] Kieft R. Mixed convection behind a heated cylinder [M]. Citeseer, 2000.
[3] Salimipour E. A numerical study on the fluid flow and heat transfer from a horizontal circular cylinder under mixed convection [J]. International Journal of Heat and Mass Transfer, 2019, 131: 365-74.
[4] Altaç Z, Sert Z, Mahir N, et al. Mixed convection heat transfer from a triangular cylinder subjected to upward cross flow [J]. International Journal of Thermal Sciences, 2019, 137: 75-85.
[5] Vijaybabu T, Anirudh K, Dhinakaran S. Mixed convective heat transfer from a permeable square cylinder: A lattice Boltzmann analysis [J]. International Journal of Heat and Mass Transfer, 2017, 115: 854-70.
[6] Vijaybabu T, Anirudh K, Dhinakaran S. Lattice Boltzmann simulations of flow and heat transfer from a permeable triangular cylinder under the influence of aiding buoyancy [J]. International Journal of Heat and Mass Transfer, 2018, 117: 799-817.
[7] Smakulski P, Pietrowicz S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques [J]. Applied Thermal Engineering, 2016, 104: 636-46.
[8] 吴梦瑶, 张景新. 基于多孔介质模型的有限柱群绕流模拟 [J]. 水动力学研究与进展(A辑), 2019, 34(04): 467-74.
[9] Clark C J, Lepiane K, Liu L. Evolution and ecology of silent flight in owls and other flying vertebrates [J]. Integrative Organismal Biology, 2020, 2(1): obaa001.
[10] Dong Y, Hu K, Wang Y, et al. The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow [J]. AIP Advances, 2021, 11(8): 085320.
[11] Blaszczuk A, Jagodzik S. Heat transfer characteristic in an external heat exchanger with horizontal tube bundle [J]. International Journal of Heat and Mass Transfer, 2020, 149: 119253.
[12] Malvè M, Bergstrom D, Chen X. Modeling the flow and mass transport in a mechanically stimulated parametric porous scaffold under fluid-structure interaction approach [J]. International Communications in Heat and Mass Transfer, 2018, 96: 53-60.
[13] Du Toit C, Rousseau P G, Greyvenstein G P, et al. A systems CFD model of a packed bed high temperature gas-cooled nuclear reactor [J]. International Journal of Thermal Sciences, 2006, 45(1): 70-85.
[14] Carpio A R, Martínez R M, Avallone F, et al. Experimental characterization of the turbulent boundary layer over a porous trailing edge for noise abatement [J]. Journal of Sound and Vibration, 2019, 443: 537-58.
[15] Nield D A, Bejan A. Convection in porous media [M]. Springer, 2006.
[16] Wooding R. Steady state free thermal convection of liquid in a saturated permeable medium [J]. Journal of Fluid Mechanics, 1957, 2(3): 273-85.
[17] Forchheimer P. Wasserbewegung durch boden [J]. Z Ver Deutsch, Ing, 1901, 45: 1782-8.
[18] Brinkman H. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles [J]. Flow, Turbulence and Combustion, 1949, 1(1): 27.
[19] Vafai K, Tien C L. Boundary and inertia effects on flow and heat transfer in porous media [J]. International Journal of Heat and Mass Transfer, 1981, 24(2): 195-203.
[20] Hsu C-T, Cheng P. Thermal dispersion in a porous medium [J]. International Journal of Heat and Mass Transfer, 1990, 33(8): 1587-97.
[21] Mercier J-F O, Weisman C, Firdaouss M, et al. Heat transfer associated to natural convection flow in a partly porous cavity [J]. Journal of Heat Transfer, 2002, 124(1): 130-43.
[22] Costa V, Oliveira L, Baliga B, et al. Simulation of Coupled Flows in Adjacent Porous and Open Domains using acontrol-volume finite-element method [J]. Numerical Heat Transfer, Part A: Applications, 2004, 45(7): 675-97.
[23] Beavers G S, Joseph D D. Boundary conditions at a naturally permeable wall [J]. Journal of Fluid Mechanics, 1967, 30(1): 197-207.
[24] Neale G, Nader W. Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium [J]. The Canadian Journal of Chemical Engineering, 1974, 52(4): 475-8.
[25] Vafai K, Kim S. Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution [J]. International Journal of Heat and fluid flow, 1990, 11(3): 254-6.
[26] Kim S J, Choi C Y. Convective heat transfer in porous and overlying fluid layers heated from below [J]. International Journal of Heat and Mass Transfer, 1996, 39(2): 319-29.
[27] Ochoa-Tapia J A, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development [J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2635-46.
[28] Ochoa-Tapia J A, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment [J]. International Journal of Heat and Mass Transfer, 1995, 38(14): 2647-55.
[29] Bhattacharyya A, Sekhar G R. Viscous flow past a porous sphere with an impermeable core: effect of stress jump condition [J]. Chemical Engineering Science, 2004, 59(21): 4481-92.
[30] Chen X, Yu P, Winoto S, et al. A numerical method for forced convection in porous and homogeneous fluid domains coupled at interface by stress jump [J]. International Journal for Numerical Methods in Fluids, 2008, 56(9): 1705-29.
[31] Ochoa-Tapia J A, Whitaker S. Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects [J]. J Porous Media, 1998, 1(3): 201-17.
[32] Ochoa-Tapia J A, Whitaker S. Heat transfer at the boundary between a porous medium and a homogeneous fluid: the one-equation model [J]. Journal of Porous Media, 1998, 1(1).
[33] Josef D, Tao L. The effect of permeability on the slow motion of a porous sphere in a viscous liquid [J]. Zeitschrift Angewandte Mathematik und Mechanik, 1964, 44(8/9): 361-4.
[34] Neale G, Epstein N, Nader W. Creeping flow relative to permeable spheres [J]. Chemical Engineering Science, 1973, 28(10): 1865-74.
[35] Masliyah J H, Polikar M. Terminal velocity of porous spheres [J]. The Canadian Journal of Chemical Engineering, 1980, 58(3): 299-302.
[36] Nandakumar K, Masliyah J H. Laminar flow past a permeable sphere [J]. The Canadian Journal of Chemical Engineering, 1982, 60(2): 202-11.
[37] Srinivasacharya D. Creeping flow past a porous approximate sphere [J]. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 2003, 83(7): 499-504.
[38] Yu P, Zeng Y, Lee T S, et al. Numerical simulation on steady flow around and through a porous sphere [J]. International Journal of Heat and fluid flow, 2012, 36: 142-52.
[39] Srivastava N. Flow of a viscous fluid past a heterogeneous porous sphere at low Reynolds numbers [J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(6): 1022-30.
[40] Li C, Ye M, Liu Z. On the rotation of a circular porous particle in 2D simple shear flow with fluid inertia [J]. Journal of Fluid Mechanics, 2016, 808.
[41] Chen X, Yu P, Winoto S, et al. Numerical analysis for the flow past a porous square cylinder based on the stress‐jump interfacial‐conditions [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2008.
[42] Chen X, Yu P, Winoto S, et al. Numerical analysis for the flow past a porous trapezoidal‐cylinder based on the stress‐jump interfacial‐conditions [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2009.
[43] Yu P, Zeng Y, Lee T, et al. Wake structure for flow past and through a porous square cylinder [J]. International Journal of Heat and fluid flow, 2010, 31(2): 141-53.
[44] Yu P, Zeng Y, Lee T S, et al. Steady flow around and through a permeable circular cylinder [J]. Computers & Fluids, 2011, 42(1): 1-12.
[45] Anirudh K, Dhinakaran S. On the onset of vortex shedding past a two-dimensional porous square cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 200-14.
[46] Li Z, Zhang H, Liu Y, et al. Implementation of compressible porous–fluid coupling method in an aerodynamics and aeroacoustics code part I: Laminar flow [J]. Applied Mathematics and Computation, 2020, 364: 124682.
[47] Tang T, Yu P, Shan X, et al. The formation mechanism of recirculating wake for steady flow through and around arrays of cylinders [J]. Physics of Fluids, 2019, 31(4): 043607.
[48] Tang T, Yu P, Shan X, et al. On the transition behavior of laminar flow through and around a multi-cylinder array [J]. Physics of Fluids, 2020, 32(1): 013601.
[49] Tang T, Yu P, Shan X, et al. Investigation of drag properties for flow through and around square arrays of cylinders at low Reynolds numbers [J]. Chemical Engineering Science, 2019, 199: 285-301.
[50] 徐力群. 多孔介质空心圆柱绕流的摄动解(英文) [J]. 空气动力学学报, 1990, (01): 39-47.
[51] Noymer P D, Glicksman L R, Devendran A. Drag on a permeable cylinder in steady flow at moderate Reynolds numbers [J]. Chemical Engineering Science, 1998, 53(16): 2859-69.
[52] Bhattacharyya S, Dhinakaran S, Khalili A. Fluid motion around and through a porous cylinder [J]. Chemical Engineering Science, 2006, 61(13): 4451-61.
[53] Zhu Q, Chen Y, Yu H. Numerical simulation of the flow around and through a hygroscopic porous circular cylinder [J]. Computers & Fluids, 2014, 92: 188-98.
[54] 丁冠乔, 文军, 柳楷, 等. 多孔并列双圆柱绕流的流场分析 [J]. 广东化工, 2015, 42(12): 21-3+8.
[55] 陈洪, 朱克勤. 渗透性对多孔介质内圆柱阵列绕流特性的影响 [J]. 力学与实践, 2007, (06): 13-6+22.
[56] Yu L-H, Zhan J-M, Li Y-S. Numerical simulation of flow through circular array of cylinders using multi-body and porous models [J]. Coastal Engineering Journal, 2014, 56(03): 1450014.
[57] Zhan J-M, Hu W-Q, Cai W-H, et al. Numerical simulation of flow through circular array of cylinders using porous media approach with non-constant local inertial resistance coefficient [J]. Journal of Hydrodynamics, Ser B, 2017, 29(1): 168-71.
[58] Cummins C, Viola I M, Mastropaolo E, et al. The effect of permeability on the flow past permeable disks at low Reynolds numbers [J]. Physics of Fluids, 2017, 29(9): 097103.
[59] Liu M, Xie C, Yao M, et al. Study on the near wake of a honeycomb disk [J]. Experimental Thermal and Fluid Science, 2017, 81: 33-42.
[60] Ledda P G, Siconolfi L, Viola F, et al. Suppression of von Kármán vortex streets past porous rectangular cylinders [J]. Physical Review Fluids, 2018, 3(10): 103901.
[61] Valipour M S, Rashidi S, Bovand M, et al. Numerical modeling of flow around and through a porous cylinder with diamond cross section [J]. European Journal of Mechanics-B/Fluids, 2014, 46: 74-81.
[62] Dhinakaran S, Ponmozhi J. Heat transfer from a permeable square cylinder to a flowing fluid [J]. Energy Conversion and Management, 2011, 52(5): 2170-82.
[63] Morenko I, Fedyaev V, Galimov E. Cross-flow and heat transfer of porous permeable cylinder; proceedings of the IOP Conference Series Materials Science and Engineering (Online), F, 2015 [C].
[64] Anirudh K, Dhinakaran S. Effects of Prandtl number on the forced convection heat transfer from a porous square cylinder [J]. International Journal of Heat and Mass Transfer, 2018, 126: 1358-75.
[65] Mahdhaoui H, Chesneau X, Laatar A H. Numerical simulation of flow through a porous square cylinder [J]. Energy Procedia, 2017, 139: 785-90.
[66] Guerbaai S, Touiker M, Meftah K, et al. Numerical Study of Fluid Flow Through a Confined Porous Square Cylinder [J]. Acta Universitatis Sapientiae, Electrical and Mechanical Engineering, 2019, 11(1): 87-98.
[67] Fu W-S, Huang H-C, Liou W-Y. Thermal enhancement in laminar channel flow with a porous block [J]. International Journal of Heat and Mass Transfer, 1996, 39(10): 2165-75.
[68] Fu W, Chen S. A numerical study of heat transfer of a porous block with the random porosity model in a channel flow [J]. Heat and Mass Transfer, 2002, 38(7-8): 695-704.
[69] Huang P, Yang C, Hwang J, et al. Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers [J]. International Journal of Heat and Mass Transfer, 2005, 48(3-4): 647-64.
[70] Yang J, Zeng M, Wang Q, et al. Forced convection heat transfer enhancement by porous pin fins in rectangular channels [J]. Journal of Heat Transfer, 2010, 132(5).
[71] Wu H-W, Wang R-H. Convective heat transfer over a heated square porous cylinder in a channel [J]. International Journal of Heat and Mass Transfer, 2010, 53(9-10): 1927-37.
[72] Perng S-W, Wu H-W, Wang R-H, et al. Unsteady convection heat transfer for a porous square cylinder varying cylinder-to-channel height ratio [J]. International Journal of Thermal Sciences, 2011, 50(10): 2006-15.
[73] Rong F, Shi B, Cui X. Lattice Boltzmann simulation of heat and fluid flow in 3D cylindrical heat exchanger with porous blocks [J]. Applied Mathematics and Computation, 2016, 276: 367-78.
[74] Sadegh Valipour M, Zare Ghadi A. Numerical investigation of forced convective heat transfer around and through a porous circular cylinder with internal heat generation [J]. Journal of Heat Transfer, 2012, 134(6).
[75] Zhang M, Zhao Q, Huang Z, et al. Numerical simulation of the drag and heat-transfer characteristics around and through a porous particle based on the lattice Boltzmann method [J]. Particuology, 2021, 58: 99-107.
[76] Schekman S, Kim T. Thermal flows around a fully permeable short circular cylinder [J]. International Journal of Heat and Mass Transfer, 2017, 105: 196-206.
[77] Ebrahimi E, Amini Y, Imani G. Numerical study of fluid flow and heat transfer characteristics of an oscillating porous circular cylinder in crossflow [J]. Physics of Fluids, 2020, 32(2): 023602.
[78] 李振环, 孙海锋, 李潇磊, 等. 高速气流冲击柱状泡沫多孔体的传热特性分析 [J]. 航空动力学报, 2018, 33(08): 1821-9.
[79] Jain A K, Basu S. Flow past a porous permeable sphere: hydrodynamics and heat-transfer studies [J]. Industrial & engineering chemistry research, 2012, 51(4): 2170-8.
[80] Wittig K, Nikrityuk P, Richter A. Drag coefficient and Nusselt number for porous particles under laminar flow conditions [J]. International Journal of Heat and Mass Transfer, 2017, 112: 1005-16.
[81] Rashidi S, Bovand M, Pop I, et al. Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder [J]. Transport in Porous Media, 2014, 102(2): 207-25.
[82] Lin Y, Zheng L. Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk [J]. AIP Advances, 2015, 5(10): 107225.
[83] Lai F-C, Prasad V, Kulacki F. Aiding and opposing mixed convection in a vertical porous layer with a finite wall heat source [J]. International Journal of Heat and Mass Transfer, 1988, 31(5): 1049-61.
[84] Bae J H, Hyun J M, Kim J W. Mixed convection in a channel with porous multiblocks under imposed thermal modulation [J]. Numerical Heat Transfer, Part A: Applications, 2004, 46(9): 891-908.
[85] Huang P C, Yang C F, Chang S Y. Mixed convection cooling of heat sources mounted with porous blocks [J]. Journal of Thermophysics and Heat Transfer, 2004, 18(4): 464-75.
[86] Guerroudj N, Kahalerras H. Mixed convection in a channel provided with heated porous blocks of various shapes [J]. Energy Conversion and Management, 2010, 51(3): 505-17.
[87] Guerroudj N, Kahalerras H. Mixed convection in an inclined channel with heated porous blocks [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2012.
[88] Wu H-W, Wang R-H. Mixed convective heat transfer past a heated square porous cylinder in a horizontal channel with varying channel height [J]. Journal of Heat Transfer, 2011, 133(2).
[89] Ferziger J H, Peric M. Computational methods for fluid dynamics [M]. Springer Science & Business Media, 2012.
[90] Rhie C, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation [J]. AIAA Journal, 1983, 21(11): 1525-32.
[91] Yu P, Lee T S, Zeng Y, et al. A numerical method for flows in porous and homogenous fluid domains coupled at the interface by stress jump [J]. International Journal for Numerical Methods in Fluids, 2007, 53(11): 1755-75.
[92] Biswas G, Sarkar S. Effect of thermal buoyancy on vortex shedding past a circular cylinder in cross-flow at low Reynolds numbers [J]. International Journal of Heat and Mass Transfer, 2009, 52(7-8): 1897-912.
[93] Soares A, Anacleto J, Caramelo L, et al. Mixed convection from a circular cylinder to power law fluids [J]. Industrial & engineering chemistry research, 2008, 48(17): 8219-31.
[94] Soares A, Ferreira J, Chhabra R. Flow and forced convection heat transfer in crossflow of non-Newtonian fluids over a circular cylinder [J]. Industrial & engineering chemistry research, 2005, 44(15): 5815-27.
[95] Bharti R P, Chhabra R, Eswaran V. Steady forced convection heat transfer from a heated circular cylinder to power-law fluids [J]. International Journal of Heat and Mass Transfer, 2007, 50(5): 977-90.
[96] Srinivas A T, Bharti R P, Chhabra R P. Mixed convection heat transfer from a cylinder in power-law fluids: effect of aiding buoyancy [J]. Industrial & engineering chemistry research, 2009, 48(21): 9735-54.
[97] Bharti R P, Chhabra R, Eswaran V. A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder [J]. Heat and Mass Transfer, 2007, 43(7): 639-48.
[98] Badr H. Laminar combined convection from a horizontal cylinder—parallel and contra flow regimes [J]. International Journal of Heat and Mass Transfer, 1984, 27(1): 15-27.
[99] Patel S, Chhabra R. Effect of aiding buoyancy on heat transfer from an isothermal elliptical cylinder in Newtonian and Bingham plastic fluids [J]. International Journal of Heat and Mass Transfer, 2015, 89: 539-66.
[100] Juncu G. A numerical study of momentum and forced convection heat transfer around two tandem circular cylinders at low Reynolds numbers. Part II: Forced convection heat transfer [J]. International Journal of Heat and Mass Transfer, 2007, 50(19-20): 3799-808.
[101] Badr H. A theoretical study of laminar mixed convection from a horizontal cylinder in a cross stream [J]. International Journal of Heat and Mass Transfer, 1983, 26(5): 639-53.
[102] Sharma V, Dhiman A K. Heat transfer from a rotating circular cylinder in the steady regime: Effects of Prandtl number [J]. Therm Sci, 2012, 16(1): 79-91.
[103] Chatterjee D, Mondal B. Control of flow separation around bluff obstacles by superimposed thermal buoyancy [J]. International Journal of Heat and Mass Transfer, 2014, 72: 128-38.
[104] De Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution [J]. International Journal for Numerical Methods in Fluids, 1983, 3(3): 249-64.
[105] Nithiarasu P, Seetharamu K, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium [J]. International Journal of Heat and Mass Transfer, 1997, 40(16): 3955-67.
[106] Guo Z, Zhao T. A lattice Boltzmann model for convection heat transfer in porous media [J]. Numerical Heat Transfer, Part B, 2005, 47(2): 157-77.
[107] Chen X, Yu P, Sui Y, et al. Natural convection in a cavity filled with porous layers on the top and bottom walls [J]. Transport in Porous Media, 2009, 78(2): 259-76.
[108] Wu F, Zhou W, Ma X. Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model [J]. International Journal of Heat and Mass Transfer, 2015, 85: 756-71.
[109] Zhang Y, Huang Y, Xu M, et al. Flow and heat transfer simulation in a wall-driven porous cavity with internal heat source by multiple-relaxation time lattice Boltzmann method (MRT-LBM) [J]. Applied Thermal Engineering, 2020, 173: 115209.
[110] Feng X-B, Liu Q, He Y-L. Numerical simulations of convection heat transfer in porous media using a cascaded lattice Boltzmann method [J]. International Journal of Heat and Mass Transfer, 2020, 151: 119410.
[111] Pepona M, Favier J. A coupled Immersed Boundary–Lattice Boltzmann method for incompressible flows through moving porous media [J]. Journal of Computational Physics, 2016, 321: 1170-84.
[112] Chen H, Yu P, Shu C. A unified immersed boundary-lattice Boltzmann flux solver (UIB-LBFS) for simulation of flows past porous bodies [J]. Physics of Fluids, 2021, 33(8): 083603.
[113] Lienhard I, John H. A heat transfer textbook [M]. phlogiston press, 2005.
[114] Aichlmayr H T, Kulacki F. The effective thermal conductivity of saturated porous media [J]. Advances in heat transfer, 2006, 39: 377-460.
[115] Underwood R L. Calculation of incompressible flow past a circular cylinder at moderate Reynolds numbers [J]. Journal of Fluid Mechanics, 1969, 37(1): 95-114.
[116] Noack B R, Eckelmann H. A low‐dimensional Galerkin method for the three‐dimensional flow around a circular cylinder [J]. Physics of Fluids, 1994, 6(1): 124-43.
[117] Coutanceau M, Bouard R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow [J]. Journal of Fluid Mechanics, 1977, 79(2): 231-56.
[118] Taneda S. Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers [J]. Journal of the Physical Society of Japan, 1956, 11(3): 302-7.
[119] Rajani B, Kandasamy A, Majumdar S. Numerical simulation of laminar flow past a circular cylinder [J]. Applied Mathematical Modelling, 2009, 33(3): 1228-47.
[120] Bovand M, Rashidi S, Dehesht M, et al. Effect of fluid-porous interface conditions on steady flow around and through a porous circular cylinder [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2015.
[121] Leal L, Acrivos A. The effect of base bleed on the steady separated flow past bluff objects [J]. Journal of Fluid Mechanics, 1969, 39(4): 735-52.
[122] Leal L. Vorticity transport and wake structure for bluff bodies at finite Reynolds number [J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(1): 124-31.
[123] Tritton D J. Experiments on the flow past a circular cylinder at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1959, 6(4): 547-67.
[124] Dennis S, Chang G-Z. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 [J]. Journal of Fluid Mechanics, 1970, 42(3): 471-89.
[125] Takami H, Keller H B. Steady two‐dimensional viscous flow of an incompressible fluid past a circular cylinder [J]. The Physics of Fluids, 1969, 12(12): II-51-II-6.
[126] Park J, Kwon K, Choi H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160 [J]. KSME international Journal, 1998, 12(6): 1200-5.
[127] Silva A L E, Silveira-Neto A, Damasceno J. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method [J]. Journal of Computational Physics, 2003, 189(2): 351-70.
[128] Taira K, Colonius T. The immersed boundary method: a projection approach [J]. Journal of Computational Physics, 2007, 225(2): 2118-37.
[129] Wu J, Shu C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications [J]. Journal of Computational Physics, 2009, 228(6): 1963-79.
[130] Hatton A, James D, Swire H. Combined forced and natural convection with low-speed air flow over horizontal cylinders [J]. Journal of Fluid Mechanics, 1970, 42(1): 17-31.
[131] Collis D, Williams M. Two-dimensional convection from heated wires at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1959, 6(3): 357-84.
[132] Krall K, Eckert E. Local heat transfer around a cylinder at low Reynolds number [J]. 1973.
[133] Dhiman A, Chhabra R, Eswaran V. Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number [J]. International Journal of Heat and Mass Transfer, 2005, 48(21-22): 4598-614.
[134] Dhiman A, Chhabra R, Sharma A, et al. Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime [J]. Numerical Heat Transfer, Part A: Applications, 2006, 49(7): 717-31.
[135] Ajith Kumar S, Mathur M, Sameen A, et al. Effects of Prandtl number on the laminar cross flow past a heated cylinder [J]. Physics of Fluids, 2016, 28(11): 113603.
[136] Ya C, Ghajar A, Ma H. Heat and Mass Transfer Fundamentals & Applications [M]. McGraw-Hill. 2015
[137] Chatterjee D. Dual role of thermal buoyancy in controlling boundary layer separation around bluff obstacles [J]. International Communications in Heat and Mass Transfer, 2014, 56: 152-8.
[138] Patnaik B V, Narayana P A, Seetharamu K. Numerical simulation of vortex shedding past a circular cylinder under the influence of buoyancy [J]. International Journal of Heat and Mass Transfer, 1999, 42(18): 3495-507.
[139] Gandikota G, Amiroudine S, Chatterjee D, et al. The effect of aiding/opposing buoyancy on two-dimensional laminar flow across a circular cylinder [J]. Numerical Heat Transfer, Part A: Applications, 2010, 58(5): 385-402.
[140] Badr H. On the effect of flow direction on mixed convection from a horizontal cylinder [J]. International Journal for Numerical Methods in Fluids, 1985, 5(1): 1-12.
[141] Hasan N, Ali R. Vortex-shedding suppression in two-dimensional mixed convective flows past circular and square cylinders [J]. Physics of Fluids, 2013, 25(5): 88.
[142] Hasan N, Saeed A. Effects of heating and free-stream orientation in two-dimensional forced convective flow of air past a square cylinder [J]. International Journal of Thermal Sciences, 2017, 112: 1-30.
[143] Ali R, Hasan N. Steady and unsteady flow regimes in two-dimensional mixed convective flow of air past a heated square cylinder [J]. International Journal of Mechanical Sciences, 2020, 175: 105533.
[144] Kieft R N, Rindt C, Van Steenhoven A, et al. On the wake structure behind a heated horizontal cylinder in cross-flow [J]. Journal of Fluid Mechanics, 2003, 486: 189-211.
[145] Bhattacharyya S, Singh A. Vortex shedding and heat transfer dependence on effective Reynolds number for mixed convection around a cylinder in cross flow [J]. International Journal of Heat and Mass Transfer, 2010, 53(15-16): 3202-12.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
O357.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/352525
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
余世敏. 热力作用下多孔介质圆柱绕流和传热特性的数值研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849524-余世敏-力学与航空航天(23904KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[余世敏]的文章
百度学术
百度学术中相似的文章
[余世敏]的文章
必应学术
必应学术中相似的文章
[余世敏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。