中文版 | English
题名

基于异质薄膜微结构接触的介入导管前端力传感器的研究

其他题名
Research on force sensor of interventional catheter tip based on heterogeneous thin film microstructure contact
姓名
姓名拼音
CAO Xiuqi
学号
12032307
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王磊
导师单位
中科院深圳先进技术研究院
论文答辩日期
2022-05-11
论文提交日期
2022-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
   在心血管介入手术术中,医生、患者和医护人员会受到 X 线辐射,通 过医生远程操作的介入手术机器人可以大幅度减少医生的辐射。但同时会 带来力感知缺失的问题。目前介入手术机器人不具备介入导管的力觉信息 反馈,即没有实现医生在手术外间通过主从操作技术来真正体验到手术的临场感,医生无法得知介入导管头部在病人体内的受力状况。
   在介入导管前端增加力反馈装置,可以监测介入导管与病人血管的作用状态。目前压力传感器在手术工具有着广泛的应用,但大多数力传感器体积庞大。介入导管前端需要更小型、更灵活的力传感器。研究表明,圆柱微结构能够提高对压力的灵敏度。大多数力传感器都是基于同质薄膜微结构开发的,而没有充分考虑使用异质微结构。为进一步提高传感器性能,本文设计了异质圆柱微结构来制备传感器。
   本文将将力传感器集成装载在介入导管前端以提供介入导管与血管间的力反馈信息。选用了生物相容性好的 PDMS/炭黑材料和 MCNTs 作为本传感器的导电薄膜材料与电极材料。改进了导电薄膜的制作工艺,开发了二次装载微结构的方法,并制备了带有绝缘圆柱微结构的异质导电薄膜。
使用异质圆柱微结构的器件线性输出范围相对于提高 57%。随后使用微加工技术对传感器进行制备,并在测力平台上进行动态测试,以评估其各方面性能。本文设计的传感器压力-电阻拟合曲线与真实循环压力的准确度在8.7%;该器件在 0-1N 的压力范围区间内灵敏度随压力增大从 0.22kPa-1 减小到 0.001kPa-1。器件的响应时间为 64ms,恢复时间为 48ms。能承受 500 次循环加载保持稳定。最后,开发了适合该传感器使用的电阻测量系统并进行调试。
   总之,本文制备的传感器在稳定性方面表现出了较好的性能。有望应用于血管介入机器人用于增强力感知。
 
其他摘要

  

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] 胡盛寿, 高润霖, 刘力生, et al. 《中国心血管病报告 2018》概要 [J]. 中国循环杂志, 2019, 34(03): 209-20.
[2] KARATASAKIS A, BRILAKIS H S, DANEK B A, et al. Radia tion-assoc ia ted lens changes in the ca rdia c cathete riz ation labora tory: Re sults from the IC- CATARACT (CATara cts Attributed to RAdiation in the CaTh lab) study [J]. Ca the teriza tion and Cardiovascular Interventions, 2018, 91(4): 647-54.
[3] SMILOWITZ N R, BALTER S, WEISZ G. Occupational ha zards of inte rventional ca rdiology [J]. Ca rdiova scula r Revascula riz ation Medic ine, 2013, 14(4): 223-8.
[4] 任 成 一 . 主 从 介 入 操 作 导 管 机 器 人 系 统 力 反 馈 模 糊 控 制 研 究 [D]; 沈 阳 工 业 大 学 , 2015.
[5] GRANADA J F, DELGADO J A, URIBE M P, et al. First-in-human evaluation of a nove l robotic-assisted coronary angiopla sty system [J]. JACC: Ca rdiova scula r Interventions, 2011, 4(4): 460-5.
[6] WEISZ G, METZGER D C, CAPUTO RONALD P, et al. Saf ety and Fea sibility of Robotic Per cutaneous Coronary Intervention [J]. Journa l of the American College of Cardiology, 2013, 61(15): 1596-600.
[7] VANO E, KLEIMAN N J, DURAN A, et al. Radia tion Ca ta ract Risk in Interventional Cardiology Personne l [J]. Radiation Rese arch, 2010, 174(4): 490- 5.
[8] KIM J, LEE M, SHIM H J, et al. Stretchable silicon nanoribbon ele ctronics for skin prosthesis [J]. Nature Communic ations, 2014, 5(1): 5747.
[9] NAG A, MUKHOPADHYAY S C, KOSEL J. Wear able Flexible Sensors: A Review [J]. IEEE Sensors Journal, 2017, 17(13): 3949-60.
[10] LIU M-Y, HANG C-Z, ZHAO X-F, et al. Advanc e on flexible pr essur e sensors ba sed on meta l and carbona ceous nanomaterial [J]. Nano Ene rgy, 2021, 87(106181.
[11] LIU H, WANG W, XIANG H, et al. Pape r-ba sed flexible stra in and pr essur e sensor with enhanced mechanica l strength and supe r-hydrophobicity that can work unde r water [J]. Journa l of Materials Chemistry C, 2022, 10(10): 3908-18.
[12] ZHANG J-W, ZHANG Y, LI Y-Y, et al. Textile-Based Flexible Pressure Sensors: A Review [J]. Polymer Reviews, 2022, 62(1): 65-94.
[13] CHEN W, YAN X. Progre ss in achieving high-performance piezoresistive and capac itive flexible pr essur e sensors: A review [J]. Journa l of Materials Scienc e & Technology, 2020, 43(175-88.
[14] SHI J, WANG L, DAI Z, et al. Multisca le Hie rarchica l Design of a Flexible Piezore sistive Pre ssure Sensor with High Sensitivity and Wide Line arity Range [J]. Sma ll, 2018, 14(27): e1800819.
[15] HUANG Y, HE X, GAO L, et al. Pressure-sensitive carbon black/graphene nanopla telets-silicone rubbe r hybrid conductive composites ba sed on a three- dimensional polydopamine-modified polyurethane sponge [J]. Journa l of Materials Science : Mate ria ls in Ele ctronics, 2017, 28(13): 9495-504.
[16] GURARSLAN A, ÖZDEMIR B, BAYAT İ H, et al. Silver nanowire coated knitted wool fabric s for wea rable elec tronic applications [J]. Journa l of Engine ered Fibers and Fabrics, 2019, 14(1558925019856222.
[17] YOU X, HE J, NAN N, et al. Stretchable capacitive fabric elec tronic skin woven by ele ctrospun nanofibe r coated ya rns for de te cting tac tile and multimodal mechanica l stimuli [J]. Journa l of Materials Chemistry C, 2018, 6(47): 12981-91. 69参考文献
[18] ZHAO X, HUA Q, YU R, et al. Flexible, Stre tchable and Wear able Multifunc tional Sensor Array as Artific ia l Ele ctronic Skin for Static and Dynamic Strain Mapping [J]. Advanc ed Ele ctronic Materials, 2015, 1(7): 1500142.
[19] DENG C, TANG W, LIU L, et al. Self -Powered Insole Planta r Pressure Mapping System [J]. Advanc ed Functional Materia ls, 2018, 28(29): 1801606.
[20] CHUNYAN L, SOOHYUN L, GORTON A, et al. Dome or bump-shaped PVDF- TrFE films deve loped with a new mold-transfer method for flexible tac tile sensors; proc eedings of the 2007 IEEE 20th Interna tional Confe renc e on Mic ro Ele ctro Mechanic al Systems (MEMS), F 21-25 Jan. 2007, 2007 [C].
[21] JIN G J, UDDIN M J, SHIM J S. Biomime tic Cilia ‐Patte rned Rubber Ele ctrode Using Ultra Conductive Polydime thylsiloxane [J]. Advanc ed Functiona l Materials, 2018, 28(50): 1804351.
[22] KIM U, LEE D H, YOON W J, et al. Force Sensor Integra ted Surgic al Forceps for Minimally Invasive Robotic Surgery [J]. IEEE Transac tions on Robotic s, 2015, 31(5): 1214-24.
[23] ARABAGI V, FELFOUL O, GOSLINE A H, et al. Biocompa tible Pressure Sensing Skins for Minimally Invasive Surgic al Instruments [J]. IEEE Sens J, 2016, 16(5): 1294-303.
[24] CHITNIS G, MALEKI T, SAMUELS B, et al. A Minimally Invasive Implantable Wireless Pressure Sensor for Continuous IOP Monitoring [J]. IEEE Tr ansactions on Biomedica l Engine ering, 2013, 60(1): 250-6.
[25] SEOK D, KIM Y B, KIM U, et al. Compensation of Environmenta l Influenc es on Sensorized-Forc eps for Pra ctica l Surgica l Tasks [J]. IEEE Robotic s and Automation Letters, 2019, 4(2): 2031-7.
[26] M. KOUHANI M H, WU J, TAVAKOLI A, et al. Wire le ss, pa ssive strain sensor in a doughnut-shaped conta ct lens for continuous non-invasive self-monitoring of intr aocular pre ssure [J]. Lab on a Chip, 2020, 20(2): 332-42.
[27] SIMON D, KERN L, WAGNER J, et al. A Re configurable Tooling System for Produc ing Pla stic Shields [J]. Proc edia CIRP, 2014, 17(853-8.
[28] VARSHOSAZ J, RIAHI S, GHASSAMI E, et al. Transferrin-ta rgeted poly(butylene adipate)/ter ephtha late nanoparticles for targeted de livery of 5- fluoroura cil in HT29 colore cta l cance r cell line [J]. Journal of Bioactive and Compatible Polymers, 2017, 32(5): 503-27.
[29] WEN Z, YANG J, DING H, et al. Ultra-highly sensitive, low hysteretic and flexible pre ssure sensor ba sed on porous MWCNTs/Ecoflex ela stomer composites [J]. Journa l of Mate ria ls Scienc e: Materials in Ele ctronics, 2018, 29(24): 20978-83.
[30] 唐冬玉, 刘莉, 刘皓. 生物电干电极的常用材料概述 [J]. 材料科学与工程学报, 2020, 38(05): 860-8.
[31] CHEN T, SAADATNIA Z, KIM J, et al. Novel, Flexible, and Ultrathin Pressure Feedback Sensor for Miniaturized Intraventricular Neurosurgery Robotic Tools [J]. IEEE Transactions on Industria l Ele ctronics, 2021, 68(5): 4415-25.
[32] FAN Y, FOWLER G D, ZHAO M. The pa st, pr esent and future of carbon black as a rubber reinfor cing filler – A review [J]. Journa l of Cle aner Produc tion, 2020, 247(119115.
[33] 赵丽琼. 炭黑填充型导电硅橡胶导电特性研究 [D]; 昆明理工大学, 2012.
[34] 胡松青, 吕强, 王志坤, et al. 碳纳米管/聚合物复合材料界面结合性能的研究进展 [J]. 复合材料学报, 2017, 34(01): 12-22.
[35] KAUSAR A. Self-he a ling polyme r/c arbon nanotube nanocomposite : A review [J]. Journa l of Plastic Film & Shee ting, 2020, 37(2): 160-81.
[36] HUANG D, YANG Z, LI X, et al. Three-dimensional conductive ne tworks ba sed on stacked SiO2@graphene frameworks for enhanced ga s sensing [J]. Nanosca le, 2017, 9(1): 109-18. 70参考文献71
[37] LUO Z, LI X, LI Q, et al. In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performanc e Enhancement [J]. Advanc ed Ele ctronic Mate ria ls, 2020, 6(6): 2000269.
[38] EBBESEN T W, LEZEC H J, HIURA H, et al. Ele ctrica l conduc tivity of individual carbon nanotube s [J]. Natur e, 1996, 382(6586): 54-6.
[39] LIU W, SONG M-S, KONG B, et al. Flexible and Stre tchable Energy Storage: Re cent Advanc es and Future Perspe ctives [J]. Advanced Materials, 2017, 29(1): 1603436.
[40] KIM S, AMJADI M, LEE T I, et al. Wear able , Ultrawide -Range, and Bending- Insensitive Pre ssure Sensor Ba sed on Ca rbon Nanotube Network-Coa ted Porous Ela stomer Sponges for Human Interfa ce and Hea lthcare Devices [J]. ACS Appl Mater Interfa ces, 2019, 11(26): 23639-48.
[41] WANG C, XIA K, WANG H, et al. Advanced Ca rbon for Flexible and Wear able Ele ctronics [J]. Advanc ed Materials, 2019, 31(9): 1801072.
[42] PONRAJ G, KIRTHIKA S K, LIM C M, et al. Soft Tac tile Sensors With Inkjet- Printing Conduc tivity and Hydrogel Biocompa tibility for Re tra ctors in Cadaveric Surgica l Tria ls [J]. IEEE Sensors Journa l, 2018, 18(23): 9840-7.
[43] DENG J, ZHUANG W, BAO L, et al. A tac tile sensing textile with bending- independent pressure perc eption and spa tial acuity [J]. Ca rbon, 2019, 149(63-70.
[44] HONG J, PARK D W, SHIM S E. Elec trical, thermal, and rheological properties of carbon black and carbon nanotube dual filler-incorporated poly(dimethylsiloxane) nanocomposites [J]. Mac romole cula r Re se arch, 2012, 20(5): 465-72.
[45] LOPEZ-MARTIN A J, CARLOSENA A. Low-cost analog inte rfac e circuit for resistive bridge sensors; proc eedings of the 2013 13th Interna tional Symposium on Communic ations and Informa tion Technologies (ISCIT), F 4-6 Sept. 2013, 2013 [C].
[46] NAGARAJAN P R, GEORGE B, KUMAR V J. A Linea rizing Digitizer for Whe atstone Bridge Ba sed Signa l Conditioning of Re sistive Sensors [J]. IEEE Sensors Journal, 2017, 17(6): 1696-705.
[47] ZHANG H, SHI G. Symbolic behaviora l modeling for slew and settling analysis of ope rationa l amplifiers; proce edings of the 2011 IEEE 54th Interna tional Midwest Symposium on Circuits and Systems (MWSCAS), F 7-10 Aug. 2011, 2011 [C].
[48] KARUTHEDATH C B, FIKRI U, RUF F, et al. Chara cterization of carbon black filled PDMS-composite membranes for sensor applications; proc eedings of the Key engine ering mate ria ls, F, 2017 [C]. Trans Tech Publ.
[49] WANG X, ZHAO J, CHEN M, et al. Improved Self-Healing of Polyethylene /Carbon Black Nanocomposite s by Their Shape Memory Effe ct [J]. The Journa l of Physica l Chemistry B, 2013, 117(5): 1467-74.
[50] RISANGUD N, LI Z, ANASTASAKI A, et al. Hydrosilyla tion as an efficient tool for polymer synthesis and modific ation with metha crylate s [J]. RSC Advanc es, 2015, 5(8): 5879-85.
[51] OGIEGLO W, VAN DER WERF H, TEMPELMAN K, et al. n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltra tion pe rmea tion conditions, resolved by spe ctroscopic ellipsome try [J]. Journa l of Membrane Scienc e, 2013, 437(313-23.
[52] ZHOU Z, WANG Z, LIN L. Mic rosystems and nanotechnology [M]. Springer, 2012.
[53] 姚蔡翔. 激光加工的原理、应用现状与展望 [J]. 山东工业技术, 2013, 15): 12-4.
[54] 邢朝洋. 高性能 MEMS 惯性器件工程化关键技术研究 [D]; 中国航天科技集团公司第 一研究院, 2017.
[55] DUAN Z, JIANG Y, HUANG Q, et al. A do-it-yourse lf approach to achieving a flexible pre ssure sensor using da ily use mate ria ls [J]. Journa l of Materials参考文献 Chemistry C, 2021, 9(39): 13659-67.
[56] NISTICò R. Polye thylene terephthalate (PET) in the pa ckaging industry [J]. Polymer Testing, 2020, 90(106707.
[57] LEI K F, LEE K-F, LEE M-Y. Development of a flexible PDMS capac itive pr essur e sensor for plantar pre ssure measurement [J]. Mic roelectronic Engine ering, 2012, 99(1-5.
[58] LUO Z, CHEN J, ZHU Z, et al. Mic rostructural-PVDF Die lec tric Layer Based High-Re solution Flexible Capacitive Pre ssure Sensor; proceedings of the 2021 IEEE 16th Internationa l Confe renc e on Nano/Micro Engine ered and Mole cular Systems (NEMS), F 25-29 April 2021, 2021 [C].
[59] SHEARER C J, YU L, BLANCH A J, et al. Broadening of van Hove Singularities Mea sured by Photoemission Spec troscopy of Single- and Mixed-Chirality Single -Wa lled Carbon Nanotubes [J]. The Journal of Physica l Chemistry C, 2019, 123(43): 26683-94.
[60] THOSTENSON E T, CHOU T-W. Proce ssing-structure-multi-functiona l property rela tionship in ca rbon nanotube /epoxy composites [J]. Ca rbon, 2006, 44(14): 3022-9.
[61] RIO-ECHEVARRIA I M, PONTI J, URBáN P, et al. Via l sonication and ultr asonic imme rsion probe sonication to genera te stable dispersions of multiwall carbon nanotube s for physico-chemic al chara cte riz ation and biological testing [J]. Nanotoxicology, 2019, 13(7): 923-37.
[62] HU M, GAO Y, JIANG Y, et al. High-performance strain sensors ba sed on bilayer carbon black/PDMS hybrids [J]. Advanc ed Composites and Hybrid Materials, 2021, 4(3): 514-20.
[63] LIU X, ZHU Y, NOMANI M W, et al. A highly sensitive pr essur e sensor using a Au-patte rned polydime thylsiloxane membrane for biosensing applications [J]. Journa l of Mic romechanic s and Mic roengineering, 2013, 23(2): 025022.
[64] DUPONT P E, LOCK J, ITKOWITZ B, et al. Design and Control of Conc entric- Tube Robots [J]. IEEE Transactions on Robotic s, 2010, 26(2): 209-25.
[65] LOPEZ J I, KANG I, YOU W-K, et al. In situ force mapping of mammary gland transforma tion [J]. Integrative Biology, 2011, 3(9): 910-21.
[66] GWILLIAM J C, PEZZEMENTI Z, JANTHO E, et al. Human vs. robotic tactile sensing: Detecting lumps in soft tissue; proceedings of the 2010 IEEE Haptics Symposium, F 25-26 March 2010, 2010 [C].

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TG164.2+1 TG292
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353144
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
曹修齐. 基于异质薄膜微结构接触的介入导管前端力传感器的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032307-曹修齐-中国科学院深圳(3633KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[曹修齐]的文章
百度学术
百度学术中相似的文章
[曹修齐]的文章
必应学术
必应学术中相似的文章
[曹修齐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。