中文版 | English
题名

氧杂螺环手性催化剂的设计与合成和铑催化的烯炔环异构化

其他题名
Design and synthesis of oxa-spirocyclic chiral catalyst and rhodium-catalyzed enyne cycloisomerization
姓名
姓名拼音
ZENG Jingwen
学号
11930087
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
张绪穆,陈根强
导师单位
前沿与交叉科学研究院;理学院
论文答辩日期
2022-05-12
论文提交日期
2022-07-08
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

手性是自然界的基本物质属性,获得手性化合物需要进行不对称合成。目前不对称金属催化被认为是最为高效的不对称合成方法之一,其中手性配体是金属催化不对称合成的关键要素。优势骨架可衍生出一系列优势配体,因此优势手性骨架的发展对于新型手性配体的开发具有引领作用。本论文主要围绕氧杂螺环手性配体、铑催化的烯炔环异构化反应两个主题开展研究工作,主要目的是利用自主研发的氧杂螺环手性骨架,开发新型的手性催化剂,借此发展一些新颖且实用的有机合成方法学,并用于复杂药物分子的全合成研究。

本文取得了一批创新性的研究成果:

首先,本文发现了第一例四核铑paddle-wheel催化剂。目前,多金属催化已经成为当前金属有机化学发展的一个重要方向,但如何获得结构新颖、具有高催化活性的多金属配合物是具有挑战性的课题。本论文通过氧杂螺环骨架手性羧酸配体的设计,意外发现了第一例具有四核铑paddle-wheel结构的催化剂。通过核磁共振谱图、X射线单晶衍射,本文清晰地鉴定了该四核铑配合物的分子结构,证明了这是一个具有高度动态对称性的四金属paddle-wheel配合物。本文初步研究了该催化剂在烯炔环异构化、金属卡宾转移等反应中的催化活性,同时正在对该四金属催化剂进行结构优化和多样性合成、DFT理论计算,并计划用于实现一些非传统的挑战性化学转化。

第二,利用原位制备的Rh/O-SDP氧杂螺环手性催化剂,首次实现了铑催化1,7-烯炔Alder-ene型对映选择性环异构化(高达99%收率,99% ee)。金属催化的1,7-烯炔的环化反应被认为是具有挑战性的难题,原因在于1,7-烯炔对于金属是一个不良的二齿配体,不容易被金属活化启动催化循环。本论文发现Rh/O-SDP+阳离子催化剂在芳基连接的1,7-烯炔环异构化反应中可以取得优秀的反应活性和对映选择性。该研究解决了金属催化芳基桥连1,7-烯炔的不对称环异构化问题,将人名反应“张烯炔环异构化”的适用范围从合成手性五元环拓展到了六元环,为手性六元环化合物的合成提供了一项重要策略。

最后,本论文开发了一条基于“张烯炔环异构化”的前列腺素全合成新路线。前列腺素是一个重要的激素类药物家族,具有很大的社会经济价值。目前报道的前列腺素工业合成效率仍然不理想。本文应用张绪穆课题组自主发展的不对称氢化、不对称烯炔环异构化技术,成功打通了一条高效的前列腺素全合成新路线,完成了迄今前列腺素的最短全合成(6步)。该路线通过不对称氢化,高效构建前列腺素骨架上的关键手性中心(高达98%收率,98% ee);通过烯炔环异构化高效构建了高度官能团化的手性五元环骨架 (dr >20:1, 98% ee)。此外,本文通过Fluprostanol(氟前列醇)的20克规模高效制备,充分展示了该前列腺素新合成路线的工业化应用前景,目前正在进行产业化前研究。

关键词
语种
中文
培养类别
独立培养
入学年份
2019-09
学位授予年份
2022-06
参考文献列表

[1] Glorius F, Spielkamp N, Holle S, et al. Efficient asymmetric hydrogenation of pyridines[J]. Angew. Chem., Int. Ed., 2004, 43: 2850-2852.
[2] Tang W, Zhang X A chiral 1,2-bisphospholane ligand with a novel structural motif: applications in highly enantioselective Rh-catalyzed hydrogenations[J]. Angew. Chem., Int. Ed., 2002, 41: 1612-1614.
[3] Young J F, Osborn J A, Jardine F H, et al. Hydride intermediates in homogeneous hydrogenation reactions of olefins and acetylenes using rhodium catalysts[J]. Chem. Commun., 1965: 131-132.
[4] Horner L, Siegel H, Buethe H Hydrogen transfer. XXII. Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogeneous solution[J]. Angew. Chem., Int. Ed., 1968, 7: 942.
[5] Knowles W S, Sabacky M J Catalytic asymmetric hydrogenation employing a soluble optically active rhodium complex[J]. Chem. Commun., 1968: 1445-1446.
[6] Miyashita A, Yasuda A, Takaya H, et al. Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids[J]. J. Am. Chem. Soc., 1980, 102: 7932-7934.
[7] Noyori R, Takaya H BINAP: an efficient chiral element for asymmetric catalysis[J]. Acc. Chem. Res., 1990, 23: 345-350.
[8] Ohkuma T, Ishii D, Takeno H, et al. Asymmetric Hydrogenation of Amino Ketones Using Chiral RuCl2(diphosphine)(1,2-diamine) Complexes[J]. J. Am. Chem. Soc., 2000, 122: 6510-6511.
[9] Wan F, Tang W Phosphorus Ligands from the Zhang Lab: Design, Asymmetric Hydrogenation, and Industrial Applications[J]. Chin. J. Chem., 2021, 39: 954-968.
[10] Zhao Q, Chen C, Wen J, et al. Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis[J]. Acc. Chem. Res., 2020, 53: 1905-1921.
[11] Wang H, Wen J, Zhang X Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation[J]. Chem. Rev., 2021, 121: 7530-7567.
[12] Xie J-H, Zhou Q-L Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions[J]. Acc. Chem. Res., 2008, 41: 581-593.
[13] Hentges S G, Sharpless K B Asymmetric induction in the reaction of osmium tetroxide with olefins[J]. J. Am. Chem. Soc., 1980, 102: 4263-4265.
[14] Katsuki T, Sharpless K B The first practical method for asymmetric epoxidation[J]. J. Am. Chem. Soc., 1980, 102: 5974-5976.
[15] Eder U, Sauer G, Wiechert R Total synthesis of optically active steroids. 6. New type of asymmetric cyclization to optically active steroid CD partial structures[J]. Angew. Chem., Int. Ed., 1971, 10: 496-497.
[16] Curci R, Fiorentino M, Serio M R Asymmetric epoxidation of unfunctionalized alkenes by dioxirane intermediates generated from potassium peroxomonosulfate and chiral ketones[J]. J. Chem. Soc., Chem. Commun., 1984: 155-156.
[17] Wang Z-X, Tu Y, Frohn M, et al. An Efficient Catalytic Asymmetric Epoxidation Method[J]. J. Am. Chem. Soc., 1997, 119: 11224-11235.
[18] List B, Lerner R A, Barbas C F, III Proline-Catalyzed Direct Asymmetric Aldol Reactions[J]. J. Am. Chem. Soc., 2000, 122: 2395-2396.
[19] Ahrendt K A, Borths C J, MacMillan D W C New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction[J]. J. Am. Chem. Soc., 2000, 122: 4243-4244.
[20] Tian S-K, Chen Y, Hang J, et al. Asymmetric Organic Catalysis with Modified Cinchona Alkaloids[J]. Acc. Chem. Res., 2004, 37: 621-631.
[21] Zhang Y-F, Dong X-Y, Cheng J-T, et al. Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines[J]. J. Am. Chem. Soc., 2021, 143: 15413-15419.
[22] Teichert J F, Feringa B L Phosphoramidites: Privileged Ligands in Asymmetric Catalysis[J]. Angew. Chem., Int. Ed., 2010, 49: 2486-2528.
[23] Ye B, Cramer N Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations[J]. Acc. Chem. Res., 2015, 48: 1308-1318.
[24] Mas-Rosello J, Smejkal T, Cramer N Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines[J]. Science, 2020, 368: 1098-1102.
[25] Akiyama T, Itoh J, Yokota K, et al. Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid[J]. Angew. Chem., Int. Ed., 2004, 43: 1566-1568.
[26] Ooi T, Kameda M, Maruoka K Molecular Design of a C2-Symmetric Chiral Phase-Transfer Catalyst for Practical Asymmetric Synthesis of α-Amino Acids[J]. J. Am. Chem. Soc., 1999, 121: 6519-6520.
[27] Birman V B, Rheingold A L, Lam K-C 1,1'-Spirobiindan-7,7'-diol: a novel, C2-symmetric chiral ligand[J]. Tetrahedron: Asymmetry, 1999, 10: 125-131.
[28] Chan A S C, Hu W, Pai C-C, et al. Novel Spirobicyclic Phosphinite Ligands and Their Application in Homogeneous Catalytic Hydrogenation Reactions[J]. J. Am. Chem. Soc., 1997, 119: 9570-9571.
[29] Arai M A, Kuraishi M, Arai T, et al. A new asymmetric Wacker-type cyclization and tandem cyclization promoted by Pd(II)-spiro bis(isoxazoline) catalyst[J]. J. Am. Chem. Soc., 2001, 123: 2907-2908.
[30] Yang L L, Evans D, Xu B, et al. Enantioselective Diarylcarbene Insertion into Si-H Bonds Induced by Electronic Properties of the Carbenes[J]. J. Am. Chem. Soc., 2020.
[31] Gokel G W, Ugi I K Preparation and resolution of N,N-dimethyl-α-ferrocenylethylamine. Advanced organic experiment[J]. J. Chem. Educ., 1972, 49: 294-296.
[32] Hayashi T, Tajika M, Tamao K, et al. High stereoselectivity in asymmetric Grignard cross-coupling catalyzed by nickel complexes of chiral (aminoalkylferrocenyl)phosphines[J]. J. Am. Chem. Soc., 1976, 98: 3718-3719.
[33] Togni A, Breutel C, Schnyder A, et al. A Novel Easily Accessible Chiral Ferrocenyldiphosphine for Highly Enantioselective Hydrogenation, Allylic Alkylation, and Hydroboration Reactions[J]. J. Am. Chem. Soc., 1994, 116: 4062-4066.
[34] Zeng L, Yang H, Zhao M, et al. C1-Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model[J]. ACS Catal., 2020, 10: 13794-13799.
[35] Liu C, Wang M, Xu Y, et al. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles[J]. Angew. Chem., Int. Ed., 2022.
[36] Xuan J, Studer A Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles[J]. Chem. Soc. Rev., 2017, 46: 4329-4346.
[37] Blanco-Urgoiti J, Anorbe L, Perez-Serrano L, et al. The Pauson-Khand reaction, a powerful synthetic tool for the synthesis of complex molecules[J]. Chem. Soc. Rev., 2004, 33: 32-42.
[38] Aubert C, Buisine O, Malacria M The Behavior of 1,n-Enynes in the Presence of Transition Metals[J]. Chem. Rev., 2002, 102: 813-834.
[39] Hu Y, Bai M, Yang Y, et al. Metal-catalyzed enyne cycloisomerization in natural product total synthesis[J]. Org. Chem. Front., 2017, 4: 2256-2275.
[40] Michelet V, Toullec P Y, Genet J-P Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights[J]. Angew. Chem., Int. Ed., 2008, 47: 4268-4315.
[41] Trost B M, Lautens M Cyclization via isomerization: a palladium(2+)-catalyzed carbocyclization of 1,6-enynes to 1,3- and 1,4-dienes[J]. J. Am. Chem. Soc., 1985, 107: 1781-1783.
[42] Trost B M Palladium-catalyzed cycloisomerizations of enynes and related reactions[J]. Acc. Chem. Res., 1990, 23: 34-42.
[43] Goeke A, Sawamura M, Kuwano R, et al. Enantioselective cycloisomerization of 1,6-enynes catalyzed by chiral diphosphane-palladium complexes[J]. Angew. Chem., Int. Ed., 1996, 35: 662-663.
[44] Hatano M, Yamanaka M, Mikami K A new N,P-ligand with achiral gem-dimethyloxazoline for palladium(II)-catalyzed cyclization of 1,6-enynes: Transition state probe for the N/C trans mode in Mizoroki-Heck-type C-C bond formation[J]. Eur. J. Org. Chem., 2003: 2552-2555.
[45] Jang H-Y, Hughes F W, Gong H, et al. Enantioselective reductive cyclization of 1,6-enynes via rhodium-catalyzed asymmetric hydrogenation: C-C bond formation precedes hydrogen activation[J]. J. Am. Chem. Soc., 2005, 127: 6174-6175.
[46] Cao P, Wang B, Zhang X Rh-catalyzed enyne cycloisomerization[J]. J. Am. Chem. Soc., 2000, 122: 6490-6491.
[47] Cao P, Zhang X The first highly enantioselective Rh-catalyzed enyne cycloisomerization[J]. Angew. Chem., Int. Ed., 2000, 39: 4104-4106.
[48] Hatano M, Terada M, Mikami K Highly enantioselective palladium-catalyzed ene-type cyclization of a 1,6-enyne[J]. Angew. Chem., Int. Ed., 2001, 40: 249-253.
[49] Tong X, Li D, Zhang Z, et al. Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes with an Intramolecular Halogen Shift: Reaction Scope and Mechanism[J]. J. Am. Chem. Soc., 2004, 126: 7601-7607.
[50] Tong X, Zhang Z, Zhang X Novel Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes with an Intramolecular Halogen Shift[J]. J. Am. Chem. Soc., 2003, 125: 6370-6371.
[51] Jackowski O, Wang J, Xie X, et al. Enantioselective Rhodium-Catalyzed Synthesis of α-Chloromethylene-γ-Butyrolactams from N-Allylic Alkynamides[J]. Org. Lett., 2012, 14: 4006-4009.
[52] Marinetti A, Jullien H, Voituriez A Enantioselective, transition metal catalyzed cycloisomerizations[J]. Chem. Soc. Rev., 2012, 41: 4884-4908.
[53] Chao C-M, Beltrami D, Toullec P Y, et al. Asymmetric Au(I)-catalyzed synthesis of bicyclo
[4.1.0]heptene derivatives via a cycloisomerization process of 1,6-enynes[J]. Chem. Commun., 2009: 6988-6990.
[54] Wu R, Chen K, Ma J, et al. Synergy of activating substrate and introducing C-H•••O interaction to achieve Rh2(II)-catalyzed asymmetric cycloisomerization of 1,n-enynes[J]. Sci. China: Chem., 2020, 63: 1230-1239.
[55] Porcel S, Echavarren A M Intramolecular carbostannylation of alkynes catalyzed by silver(I) species[J]. Angew. Chem., Int. Ed., 2007, 46: 2672-2676.
[56] Ojima I, Donovan R J, Shay W R Silylcarbocyclization reactions catalyzed by rhodium and rhodium-cobalt complexes[J]. J. Am. Chem. Soc., 1992, 114: 6580-6582.
[57] Chakrapani H, Liu C, Widenhoefer R A Enantioselective Cyclization/Hydrosilylation of 1,6-Enynes Catalyzed by a Cationic Rhodium Bis(phosphine) Complex[J]. Org. Lett., 2003, 5: 157-159.
[58] You Y, Ge S Asymmetric Cobalt-Catalyzed Regioselective Hydrosilylation/Cyclization of 1,6-Enynes[J]. Angew. Chem., Int. Ed., 2021, 60: 12046-12052.
[59] Kinder R E, Widenhoefer R A Rhodium-Catalyzed Asymmetric Cyclization/Hydroboration of 1,6-Enynes[J]. Org. Lett., 2006, 8: 1967-1969.
[60] Wang C, Ge S Versatile Cobalt-Catalyzed Enantioselective Entry to Boryl-Functionalized All-Carbon Quaternary Stereogenic Centers[J]. J. Am. Chem. Soc., 2018, 140: 10687-10690.
[61] Yu S, Wu C, Ge S Cobalt-catalyzed asymmetric hydroboration/cyclization of 1,6-enynes with pinacolborane[J]. J. Am. Chem. Soc., 2017, 139: 6526-6529.
[62] Cho H Y, Morken J P Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms[J]. Chem. Soc. Rev., 2014, 43: 4368-4380.
[63] Charruault L, Michelet V, Taras R, et al. Functionalized carbo- and heterocycles via Pt-catalyzed asymmetric alkoxycyclization of 1,6-enynes[J]. Chem. Commun., 2004: 850-851.
[64] Gilbertson S R, Hoge G S, Genov D G Rhodium-Catalyzed Asymmetric
[4 + 2] Cycloisomerization Reactions[J]. J. Org. Chem., 1998, 63: 10077-10080.
[65] Shibata T, Tahara Y-k, Tamura K, et al. Enantioselective Syntheses of Various Chiral Multicyclic Compounds with Quaternary Carbon Stereocenters by Catalytic Intramolecular Cycloaddition[J]. J. Am. Chem. Soc., 2008, 130: 3451-3457.
[66] Wender P A, Takahashi H, Witulski B Transition Metal Catalyzed
[5 + 2] Cycloadditions of Vinylcyclopropanes and Alkynes: A Homolog of the Diels-Alder Reaction for the Synthesis of Seven-Membered Rings[J]. J. Am. Chem. Soc., 1995, 117: 4720-4721.
[67] Shintani R, Nakatsu H, Takatsu K, et al. Rhodium-Catalyzed Asymmetric
[5+2] Cycloaddition of Alkyne-Vinylcyclopropanes[J]. Chem. - Eur. J., 2009, 15: 8692-8694.
[68] Kossler D, Cramer N Chiral Cationic CpxRu(II) Complexes for Enantioselective Yne-Enone Cyclizations[J]. J. Am. Chem. Soc., 2015, 137: 12478-12481.
[69] Legzdins P, Mitchell R W, Rempel G L, et al. The protonation of ruthenium- and rhodium-bridged carboxylates and their use as homogeneous hydrogenation catalysts for unsaturated substances[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970.
[70] Stephenson T A, Wilkinson G New ruthenium carboxylate complexes[J]. J. Inorg. Nucl. Chem., 1966, 28: 2285-2291.
[71] Hansen J, Davies H M L High symmetry dirhodium(II) paddlewheel complexes as chiral catalysts[J]. Coord. Chem. Rev., 2008, 252: 545-555.
[72] Espino C G, Fiori K W, Kim M, et al. Expanding the Scope of C-H Amination through Catalyst Design[J]. J. Am. Chem. Soc., 2004, 126: 15378-15379.
[73] Zalatan D N, Du Bois J Understanding the Differential Performance of Rh2(esp)2 as a Catalyst for C-H Amination[J]. J. Am. Chem. Soc., 2009, 131: 7558-7559.
[74] Wulfman D S Modern Catalytic Methods for Organic Synthesis with Diazo Compounds from Cyclopropanes to Ylides. By Michael P. Doyle[J]. J. Am. Chem. Soc., 1998, 120: 8292.
[75] Harvey M E, Musaev D G, Du Bois J A Diruthenium Catalyst for Selective, Intramolecular Allylic C-H Amination: Reaction Development and Mechanistic Insight Gained through Experiment and Theory[J]. J. Am. Chem. Soc., 2011, 133: 17207-17216.
[76] Miyazawa T, Suzuki T, Kumagai Y, et al. Chiral paddle-wheel diruthenium complexes for asymmetric catalysis[J]. Nat. Catal., 2020, 3: 851-858.
[77] Ren Z, Sunderland T L, Tortoreto C, et al. Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuth-Rhodium- and Dirhodium-Catalyzed Carbene Chemistry[J]. ACS Catal., 2018, 8: 10676-10682.
[78] Collins L R, Auris S, Goddard R, et al. Chiral Heterobimetallic Bismuth-Rhodium Paddlewheel Catalysts: A Conceptually New Approach to Asymmetric Cyclopropanation[J]. Angew. Chem., Int. Ed., 2019, 58: 3557-3561.
[79] Singha S, Buchsteiner M, Bistoni G, et al. A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts[J]. J. Am. Chem. Soc., 2021, 143: 5666-5673.
[80] Liao K, Liu W, Niemeyer Z L, et al. Site-Selective Carbene-Induced C-H Functionalization Catalyzed by Dirhodium Tetrakis(triarylcyclopropanecarboxylate) Complexes[J]. ACS Catal., 2018, 8: 678-682.
[81] Liao K, Yang Y-F, Li Y, et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds[J]. Nat. Chem., 2018, 10: 1048-1055.
[82] Davies H M L, Liao K Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization[J]. Nat. Rev. Chem., 2019, 3: 347-360.
[83] Liao K, Negretti S, Musaev D G, et al. Site-selective and stereoselective functionalization of unactivated C-H bonds[J]. Nature, 2016, 533: 230-234.
[84] Liao K, Pickel T C, Boyarskikh V, et al. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds[J]. Nature, 2017, 551: 609-613.
[85] Davies H M L, Beckwith R E J Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion[J]. Chem. Rev., 2003, 103: 2861-2903.
[86] Chen K, Zhu S NHC-AuCl/Selectfluor: An Efficient Catalytic System for π-Bond Activation[J]. Synlett, 2017, 28: 640-653.
[87] Hong F-L, Ye L-W Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N-Heterocycle Synthesis[J]. Acc. Chem. Res., 2020, 53: 2003-2019.
[88] Ye L-W, Zhu X-Q, Sahani R L, et al. Nitrene Transfer and Carbene Transfer in Gold Catalysis[J]. Chem. Rev., 2021, 121: 9039-9112.
[89] Deng Y, Qiu H, Srinivas H D, et al. Chiral Dirhodium(II) Catalysts for Selective Metal Carbene Reactions[J]. Curr. Org. Chem., 2016, 20: 61-81.
[90] Davies H M L, Manning J R Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion[J]. Nature, 2008, 451: 417-424.
[91] Bachmann D G, Schmidt P J, Geigle S N, et al. Modular Ligands for Dirhodium Complexes Facilitate Catalyst Customization[J]. Adv. Synth. Catal., 2015, 357: 2033-2038.
[92] Chen P-A, Setthakarn K, May J A A Binaphthyl-Based Scaffold for a Chiral Dirhodium(II) Biscarboxylate Ligand with α-Quaternary Carbon Centers[J]. ACS Catal., 2017, 7: 6155-6161.
[93] Murai T, Lu W, Kuribayashi T, et al. Conformational Control in Dirhodium(II) Paddlewheel Catalysts Supported by Chalcogen-Bonding Interactions for Stereoselective Intramolecular C-H Insertion Reactions[J]. ACS Catal., 2021, 11: 568-578.
[94] Chen G-Q, Lin B-J, Huang J-M, et al. Design and Synthesis of Chiral oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann's Lactones with Molecular H2[J]. J. Am. Chem. Soc., 2018, 140: 8064-8068.
[95] Chen G-Q, Huang J-M, Lin B-J, et al. Highly enantioselective hydrogenation of tetra- and tri-substituted α,β-unsaturated carboxylic acids with oxa-spiro diphosphine ligands[J]. CCS Chem., 2020, 2: 468-477.
[96] Deng X, Ni S F, Han Z Y, et al. Enantioselective Rhodium-Catalyzed Cycloisomerization of (E)-1,6-Enynes[J]. Angew. Chem., Int. Ed., 2016, 55: 6295-6299.
[97] Deng X, Shi L Y, Lan J, et al. Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused Bicycle
[4.3.0]nonadienes[J]. Nat. Commun., 2019, 10: 949.
[98] Lei A, He M, Wu S, et al. Highly enantioselective Rh-catalyzed intramolecular Alder-Ene reactions for the syntheses of chiral tetrahydrofurans[J]. Angew. Chem., Int. Ed., 2002, 41: 3457-3460.
[99] Lei A, He M, Zhang X Highly Enantioselective Syntheses of Functionalized α-Methylene-γ-butyrolactones via Rh(I)-catalyzed Intramolecular Alder Ene Reaction: Application to Formal Synthesis of (+)-Pilocarpine[J]. J. Am. Chem. Soc., 2002, 124: 8198-8199.
[100] Lei A, He M, Zhang X Rh-Catalyzed Kinetic Resolution of Enynes and Highly Enantioselective Formation of 4-Alkenyl-2,3-disubstituted Tetrahydrofurans[J]. J. Am. Chem. Soc., 2003, 125: 11472-11473.
[101] Lei A, Waldkirch J P, He M, et al. Highly enantioselective cycloisomerization of enynes catalyzed by rhodium for the preparation of functionalized lactams[J]. Angew. Chem., Int. Ed., 2002, 41: 4526-4529.
[102] Nicolaou K C, Edmonds D J, Li A, et al. Asymmetric total syntheses of platensimycin[J]. Angew. Chem., Int. Ed., 2007, 46: 3942-3945.
[103] Nicolaou K C, Li A, Edmonds D J Total synthesis of platensimycin[J]. Angew. Chem., Int. Ed., 2006, 45: 7086-7090.
[104] Nicolaou K C, Li A, Ellery S P, et al. Rhodium-Catalyzed Asymmetric Enyne Cycloisomerization of Terminal Alkynes and Formal Total Synthesis of (-)-Platensimycin[J]. Angew. Chem., Int. Ed., 2009, 48: 6293-6295, S6293/6291-S6293/6236.
[105] Lei H, Xin S, Qiu Y, et al. Enantioselective total synthesis of (-)-kainic acid and (+)-acromelic acid C via Rh(I)-catalyzed asymmetric enyne cycloisomerization[J]. Chem. Commun., 2018, 54: 727-730.
[106] He M, Lei A, Zhang X Enantioselective syntheses of 3,4,5-trisubstituted γ-lactones: formal synthesis of (-)-blastmycinolactol[J]. Tetrahedron Lett., 2005, 46: 1823-1826.
[107] Li J J. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications[C]:Springer,2014: 652–653.
[108] Trost B M, Toste F D Ruthenium-Catalyzed Cycloisomerizations of 1,6- and 1,7-Enynes[J]. J. Am. Chem. Soc., 2000, 122: 714-715.
[109] Trost B M, Dong L, Schroeder G M Exploiting the Pd- and Ru-Catalyzed Cycloisomerizations: Enantioselective Total Synthesis of (+)-Allocyathin B2[J]. J. Am. Chem. Soc., 2005, 127: 10259-10268.
[110] Xiao Y-C, Moberg C Silaborative Carbocyclizations of 1,7-Enynes. Diastereoselective Preparation of Chromane Derivatives[J]. Org. Lett., 2016, 18: 308-311.
[111] Yu L-Z, Wei Y, Shi M Copper-catalyzed trifluoromethylazidation and rearrangement of aniline-linked 1,7-enynes: access to CF3-substituted azaspirocyclic dihydroquinolin-2-ones and furoindolines[J]. Chem. Commun., 2017, 53: 8980-8983.
[112] Yuan X, Zheng M-W, Di Z-C, et al. Photoredox-Catalzyed Halo-trifluoromethylation of 1,7-Enynes for Synthesis of 3,4-Dihydroquinolin-2(1H)-ones[J]. Adv. Synth. Catal., 2019, 361: 1835-1845.
[113] Mao K, Bian M, Dai L, et al. Metal-Free Radical Annulation of Oxygen-Containing 1,7-Enynes: Configuration-Selective Synthesis of (E)-3-((Arylsulfonyl)methyl)-4-Substituted Arylidenechromene Derivatives[J]. Org. Lett., 2021, 23: 218-224.
[114] Hatano M, Mikami K Highly Enantioselective Quinoline Synthesis via Ene-type Cyclization of 1,7-Enynes Catalyzed by a Cationic BINAP-Palladium(II) Complex[J]. J. Am. Chem. Soc., 2003, 125: 4704-4705.
[115] Chen J, Han X, Lu X Palladium(II)-Catalyzed Reductive Cyclization of N-Tosyl-Tethered 1,7-Enynes: Enantioselective Synthesis of 1,2,3,4-Tetrahydroquinolines[J]. Org. Lett., 2019, 21: 8153-8157.
[116] Wu C, Liao J, Ge S Cobalt-Catalyzed Enantioselective Hydroboration/Cyclization of 1,7-Enynes: Asymmetric Synthesis of Chiral Quinolinones Containing Quaternary Stereogenic Centers[J]. Angew. Chem., Int. Ed., 2019, 58: 8882-8886.
[117] Uemura M, Watson I D G, Katsukawa M, et al. Gold(I)-Catalyzed Enantioselective Synthesis of Benzopyrans via Rearrangement of Allylic Oxonium Intermediates[J]. J. Am. Chem. Soc., 2009, 131: 3464-3465.
[118] Mikami K, Hatano M Palladium-catalyzed carbocyclization of 1,6-enynes leading to six-membered rings or oxidized five-membered trifluoroacetates[J]. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 5767-5769.
[119] Euler V Information on the pharmacological effect of natural secretions and extracts from male accessory sexual glands[J]. Arch. Exp. Pathol. Pharm., 1934, 175: 78–84.
[120] Bergström S The isolation of prostaglandin[J]. Acta Chem. Scand., 1957: 1086.
[121] Bergstrom S Prostaglandins: members of a new hormonal system. These physiologically very potent compounds of ubiquitous occurrence are formed from essential fatty acids[J]. Science, 1967, 157: 382-391.
[122] Gibson K H Prostaglandins, thromboxanes, PGX: biosynthetic products from arachidonic acid[J]. Chem. Soc. Rev., 1977, 6: 489-510.
[123] Funk C D Prostaglandins and leukotrienes: advances in eicosanoid biology[J]. Science, 2001, 294: 1871-1875.
[124] Dams I, Wasyluk J, Prost M, et al. Therapeutic uses of prostaglandin F2α analogues in ocular disease and novel synthetic strategies[J]. Prostaglandins Other Lipid Mediators, 2013, 104-105: 109-121.
[125] Das S, Chandrasekhar S, Yadav J S, et al. Recent Developments in the Synthesis of Prostaglandins and Analogues[J]. Chem. Rev., 2007, 107: 3286-3337.
[126] Peng H, Chen F-E Recent advances in asymmetric total synthesis of prostaglandins[J]. Org. Biomol. Chem., 2017, 15: 6281-6301.
[127] Corey E J, Weinshenker N M, Schaaf T K, et al. Stereo-controlled synthesis of dl-prostaglandins F2α and E2[J]. J. Am. Chem. Soc., 1969, 91: 5675-5677.
[128] Umekubo N, Suga Y, Hayashi Y Pot and time economies in the total synthesis of Corey lactone[J]. Chem. Sci., 2020, 11: 1205-1209.
[129] Suzuki M, Yanagisawa A, Noyori R Prostaglandin synthesis. 10. An extremely short way to prostaglandins[J]. J. Am. Chem. Soc., 1985, 107: 3348-3349.
[130] Coulthard G, Erb W, Aggarwal V K Stereocontrolled organocatalytic synthesis of prostaglandin PGF2α in seven steps[J]. Nature, 2012, 489: 278-281.
[131] Pelss A, Gandhamsetty N, Smith J R, et al. Reoptimization of the Organocatalyzed Double Aldol Domino Process to a Key Enal Intermediate and Its Application to the Total Synthesis of Δ12-Prostaglandin J3[J]. Chem. - Eur. J., 2018, 24: 9542-9545.
[132] Xu C, Shen X, Hoveyda A H In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds[J]. J. Am. Chem. Soc., 2017, 139: 10919-10928.
[133] Zhang F, Zeng J, Gao M, et al. Concise, scalable and enantioselective total synthesis of prostaglandins[J]. Nat. Chem., 2021, 13: 692-697.

所在学位评定分委会
化学系
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353145
专题理学院_化学系
推荐引用方式
GB/T 7714
曾敬文. 氧杂螺环手性催化剂的设计与合成和铑催化的烯炔环异构化[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930087_曾敬文_化学系.pdf(7255KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[曾敬文]的文章
百度学术
百度学术中相似的文章
[曾敬文]的文章
必应学术
必应学术中相似的文章
[曾敬文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。