中文版 | English
题名

大鼠和小鼠基因转录调控的顺式反式作用机制研究

其他题名
STUDYON THECIS-TRANSEFFECTSOF GENE TRANSCRIPTIONAL REGULATION IN RATS AND MICE
姓名
姓名拼音
LIANG Weizheng
学号
11749306
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
陈炜
导师单位
生物系
论文答辩日期
2021-11-18
论文提交日期
2022-07-08
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

基因转录在生物进化历程中起着十分关键的作用。早在四十多年前,美国的进化论生物学家King和Wilson就认为人与黑猩猩之间在生物大分子结构上的差别微乎其微,并不能说明二者之间在外表形态、生物特征和行为等各方面所产生的重大区别,从而提出可能是基因转录调控的改变造成人和黑猩猩的不同。然而有关基因转录调控进化的直接实验证据明显不足。近年来,随着实验手段和生物信息工具的发展,使得国内外研究学者可以开展这方面的研究,其中,杂交模型是一种经典的可用于区分基因转录调控因素中顺式调控元件(cis elements)和反式作用因子(trans factors)作用大小的研究模型。因此,通过杂交模型研究基因转录调控的顺式作用和反式作用对理解物种分子表型层面的进化有重要意义。

结合上述研究背景,本论文以大鼠和小鼠融合细胞以及杂交小鼠为研究模型,以转录组测序技术RNA-seq、染色质开放性测序技术ATAC-seq和蛋白与DNA互作技术ChIP-seq等高通量测序技术作为研究手段,开展了三个层面的研究:顺式反式调控相互作用的研究、单独顺式调控的研究以及单独反式调控的研究。

在顺式反式调控相互作用的研究层面,通过分析大鼠和小鼠在基因表达层面和染色质开放性层面顺式反式调控的区别以及遗传模式的变化,发现在基因表达调控层面,更多的基因受到了顺式和反式的共同调控,而在染色质开放性调控层面,更多基因的调控模式是保守的。此外,在遗传模式方面,发现基因表达的遗传呈现出更多不兼容的现象,相反,染色质开放性的遗传则主要表现出保守型的现象。

在单独顺式调控元件的研究层面,通过分析单等位基因在不同组织中的分布变化规律,发现单等位基因在基因表达层面和染色质开放性层面都受到明显的组织细胞特异性调控,进一步发现基因启动子区域的染色质开放性不是形成单等位基因表达的充分条件。

在单独反式作用因子研究层面,通过多物种全基因组转录因子氨基酸序列的比对分析,发现小鼠CDX2蛋白在DNA结合区域有3个特异的氨基酸突变,进一步通过功能性实验分析研究了CDX2蛋白在大鼠和小鼠中介导的转录调控差异以及小鼠CDX2蛋白三个特异氨基酸突变引起的功能变化,结果发现小鼠CDX2和大鼠CDX2之间没有明显的功能差异,但是三个氨基酸单独和组合突变会造成功能的部分缺失。

综上所述,本论文系统地探讨了大鼠和小鼠基因转录调控的进化模式,详细地研究了顺式调控元件和反式作用因子在大鼠和小鼠进化过程中发挥的作用,同时探究了多组学相互结合的应用范畴,发现了哺乳动物物种间即大鼠和小鼠之间不同于低等动物的进化调控模式,即顺式调控的影响并没有显著增多;同时,也发现了单等位基因是受到明显的组织特异性调控;此外,进化上特别保守的转录因子如CDX2也会存在氨基酸的突变,而受到如此强烈正向选择的氨基酸突变并没有在物种中引起功能性的差异。

总之,本论文为顺式反式进化调控的研究打下了良好的基础并提供了可借鉴的思路和方法,其中,大鼠和小鼠融合细胞的研究为哺乳动物物种间顺式反式进化调控的研究开辟了新的思路,后续可以通过类似的研究手段克服生殖隔离的缺陷,进而为探索人类和其他物种进化调控的差异提供可能;杂交小鼠单等位基因的研究为寻求新的常染色体单等位基因提供了有效的研究手段,也为寻求新的印记基因提供了可能;CDX2转录因子的研究为反式作用因子中蛋白氨基酸序列突变导致的进化差异的研究提供了方法参考和借鉴。

 

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-04
参考文献列表

[1] KIMURA M. The neutral theory of molecular evolution[J]. Scientific American, 1979, 241 (5): 98-129.
[2] KING M C, WILSON A C. Evolution at two levels in humans and chimpanzees[J]. Science, 1975, 188 (4184): 107-116.
[3] WITTKOPP P J, HAERUM B K, CLARK A G. Evolutionary changes in cis and trans gene regulation[J]. Nature, 2004, 430 (6995): 85-88.
[4] SIGNOR S A, NUZHDIN S V. The Evolution of Gene Expression in cis and trans[J]. Trends in Genetics, 2018, 34 (7): 532-544.
[5] GONCALVES A, LEIGH-BROWN S, THYBERT D, et al. Extensive compensatory cis-trans regulation in the evolution of mouse gene expression[J]. Genome Research, 2012, 22 (12): 2376-2384.
[6] COWLES C R, HIRSCHHORN J N, ALTSHULER D, et al. Detection of regulatory variation in mouse genes[J]. Nature genetics, 2002, 32 (3): 432-437.
[7] WRAY G A. The evolutionary significance of cis-regulatory mutations[J]. Nature Reviews Genetics, 2007, 8 (3): 206-216.
[8] MEIKLEJOHN C D, COOLON J D, HARTL D L, et al. The roles of cis- and trans- regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression[J]. Genome Research, 2014, 24 (1): 84-95.
[9] GAO Q, SUN W, BALLEGEER M, et al. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing[J]. Mol Syst Biol, 2015, 11 (7): 816.
[10] HOU J, WANG X, MCSHANE E, et al. Extensive allele-specific translational regulation in hybrid mice[J]. Mol Syst Biol, 2015, 11 (8): 825.
[11] XIAO M S, ZHANG B, LI Y S, et al. Global analysis of regulatory divergence in the evolution of mouse alternative polyadenylation[J]. Mol Syst Biol, 2016, 12 (12): 890.
[12] WITTKOPP P J, HAERUM B K, CLARK A G. Regulatory changes underlying expression differences within and between Drosophila species[J]. Nature Genetics, 2008, 40 (3): 346-350.
[13] SCHAEFKE B, EMERSON J J, WANG T Y, et al. Inheritance of Gene Expression Level and Selective Constraints on Trans- and Cis-Regulatory Changes in Yeast[J]. Molecular Biology and Evolution, 2013, 30 (9): 2121-2133.
[14] SUN W, GAO Q, SCHAEFKE B, et al. Pervasive allele-specific regulation on RNA decay in hybrid mice[J]. Life Sci Alliance, 2018, 1 (2): e201800052.
[15] LI W, SHUAI L, WAN H F, et al. Androgenetic haploid embryonic stem cells produce live transgenic mice[J]. Nature, 2012, 490 (7420): 407-411.
[16] LI W, LI X, LI T D, et al. Genetic Modification and Screening in Rat Using Haploid Embryonic Stem Cells[J]. Cell Stem Cell, 2014, 14 (3): 404-414.
[17] LI X, CUI X L, WANG J Q, et al. Generation and Application of Mouse-Rat Allodiploid Embryonic Stem Cells[J]. Cell, 2016, 164 (1-2): 279-292.
[18] GE B, POKHOLOK D K, KWAN T, et al. Global patterns of cis variation in human cells revealed by high-density allelic expression analysis[J]. Nature genetics, 2009, 41 (11): 1216-1222.
[19] GUO M, YANG S, RUPE M, et al. Genome-wide allele-specific expression analysis using massively parallel signature sequencing (MPSS™) reveals cis-and trans-effects on gene expression in maize hybrid meristem tissue[J]. Plant molecular biology, 2008, 66 (5): 551-563.
[20] RONALD J, AKEY J M. The evolution of gene expression QTL in Saccharomyces cerevisiae[J]. PLoS One, 2007, 2 (8): e678.
[21] LEMOS B, ARARIPE L O, FONTANILLAS P, et al. Dominance and the evolutionary accumulation of cis-and trans-effects on gene expression[J]. Proceedings of the National Academy of Sciences, 2008, 105 (38): 14471-14476.
[22] MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature methods, 2008, 5 (7): 621-628.
[23] MAIN B J, BICKEL R D, MCINTYRE L M, et al. Allele-specific expression assays using Solexa[J]. BMC genomics, 2009, 10 (1): 1-9.
[24] COOKSON W, LIANG L, ABECASIS G, et al. Mapping complex disease traits with global gene expression[J]. Nature Reviews Genetics, 2009, 10 (3): 184-194.
[25] ZHANG X, BOREVITZ J O. Global analysis of allele-specific expression in Arabidopsis thaliana[J]. Genetics, 2009, 182 (4): 943-954.
[26] ARNONE M I, ANDRIKOU C, ANNUNZIATA R. Echinoderm systems for gene regulatory studies in evolution and development[J]. Curr Opin Genet Dev, 2016, 39: 129-137.
[27] LUDWIG M Z, BERGMAN C, PATEL N H, et al. Evidence for stabilizing selection in a eukaryotic enhancer element[J]. Nature, 2000, 403 (6769): 564-567.
[28] BRADLEY R K, LI X-Y, TRAPNELL C, et al. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species[J]. PLoS biology, 2010, 8 (3): e1000343.
[29] BRAWAND D, SOUMILLON M, NECSULEA A, et al. The evolution of gene expression levels in mammalian organs[J]. Nature, 2011, 478 (7369): 343-348.
[30] HANKS M C, LOOMIS C A, HARRIS E, et al. Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development[J]. Development, 1998, 125 (22): 4521-4530.
[31] RONSHAUGEN M, MCGINNIS N, MCGINNIS W. Hox protein mutation and macroevolution of the insect body plan[J]. Nature, 2002, 415 (6874): 914-917.
[32] ENARD W, PRZEWORSKI M, FISHER S E, et al. Molecular evolution of FOXP2, a gene involved in speech and language[J]. Nature, 2002, 418 (6900): 869-872.
[33] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10 (12): 1213-1218.
[34] ZHENG W, GIANOULIS T A, KARCZEWSKI K J, et al. Regulatory Variation Within Between Species[J]. Annual Review of Genomics and Human Genetics, Vol 12, 2011, 12: 327-346.
[35] WHITEHEAD A, CRAWFORD D L. Neutral and adaptive variation in gene expression[J]. Proc Natl Acad Sci U S A, 2006, 103 (14): 5425-5430.
[36] GILAD Y, OSHLACK A, RIFKIN S A. Natural selection on gene expression[J]. Trends Genet, 2006, 22 (8): 456-461.
[37] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10 (1): 57-63.
[38] BRAWAND D, SOUMILLON M, NECSULEA A, et al. The evolution of gene expression levels in mammalian organs[J]. Nature, 2011, 478 (7369): 343-348.
[39] PERRY G H, MELSTED P, MARIONI J C, et al. Comparative RNA sequencing reveals substantial genetic variation in endangered primates[J]. Genome Res, 2012, 22 (4): 602-610.
[40] GELFMAN S, BURSTEIN D, PENN O, et al. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons[J]. Genome Res, 2012, 22 (1): 35-50.
[41] VALEN E, SANDELIN A. Genomic and chromatin signals underlying transcription start-site selection[J]. Trends Genet, 2011, 27 (11): 475-485.
[42] COOPER G M, SHENDURE J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data[J]. Nat Rev Genet, 2011, 12 (9): 628-640.
[43] ZHOU X, CAIN C E, MYRTHIL M, et al. Epigenetic modifications are associated with inter-species gene expression variation in primates[J]. Genome Biology, 2014, 15 (12).
[44] SCHMIDT D, WILSON M D, BALLESTER B, et al. Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding[J]. Science, 2010, 328 (5981): 1036-1040.
[45] KASOWSKI M, GRUBERT F, HEFFELFINGER C, et al. Variation in transcription factor binding among humans[J]. Science, 2010, 328 (5975): 232-235.
[46] O'DOHERTY A, RUF S, MULLIGAN C, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes[J]. Science, 2005, 309 (5743): 2033-2037.
[47] WONG E S, SCHMITT B M, KAZACHENKA A, et al. Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution[J]. Nature Communications, 2017, 8.
[48] PEMBROKE W G, HARTL C L, GESCHWIND D H. Evolutionary conservation and divergence of the human brain transcriptome[J]. Genome Biology, 2021, 22 (1): 52.
[49] WONG E S, ZHENG D, TAN S Z, et al. Deep conservation of the enhancer regulatory code in animals[J]. Science, 2020, 370 (6517).
[50] ZOU X, SCHAEFKE B, LI Y, et al. Mammalian splicing divergence is shaped by drift, buffering in trans, and a scaling law[J]. Life Science Alliance, 2022, 5 (4).
[51] ZHANG X M, WU K L, ZHENG Y X, et al. In vitro expansion of human sperm through nuclear transfer[J]. Cell Research, 2020, 30 (4): 356-359.
[52] ZHANG S W, ZHANG H W, ZHOU Y F, et al. Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants[J]. Science, 2020, 369 (6503): 561-565.
[53] RAYON T, STAMATAKI D, PEREZ-CARRASCO R, et al. Species-specific pace of development is associated with differences in protein stability[J]. Science, 2020, 369 (6510).
[54] SUN Y H, DONG L, ZHANG Y, et al. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize[J]. Genome Biology, 2020, 21 (1).
[55] RICHARD D, LIU Z, CAO J X, et al. Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk[J]. Cell, 2020, 181 (2): 362-381.
[56] MCLEAN C Y, RENO P L, POLLEN A A, et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits[J]. Nature, 2011, 471 (7337): 216-219.
[57] ENARD W, GEHRE S, HAMMERSCHMIDT K, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice[J]. Cell, 2009, 137 (5): 961-971.
[58] REIK W, WALTER J. Genomic imprinting: parental influence on the genome[J]. Nat Rev Genet, 2001, 2 (1): 21-32.
[59] DENG Q L, RAMSKOLD D, REINIUS B, et al. Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells[J]. Science, 2014, 343 (6167): 193-196.
[60] CHESS A. Monoallelic Gene Expression in Mammals[J]. Annual Review of Genetics, Vol 50, 2016, 50: 317-327.
[61] KERMICLE J L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission[J]. Genetics, 1970, 66 (1): 69-85.
[62] JOHNSON D R. Hairpin-tail: a case of post-reductional gene action in the mouse egg[J]. Genetics, 1974, 76 (4): 795-805.
[63] CATTANACH B M, KIRK M. Differential activity of maternally and paternally derived chromosome regions in mice[J]. Nature, 1985, 315 (6019): 496-498.
[64] MCGRATH J, SOLTER D. Completion of mouse embryogenesis requires both the maternal and paternal genomes[J]. Cell, 1984, 37 (1): 179-183.
[65] DECHIARA T M, ROBERTSON E J, EFSTRATIADIS A. Parental imprinting of the mouse insulin-like growth factor II gene[J]. Cell, 1991, 64 (4): 849-859.
[66] BARLOW D P, STöGER R, HERRMANN B G, et al. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus[J]. Nature, 1991, 349 (6304): 84-87.
[67] BARTOLOMEI M S, ZEMEL S, TILGHMAN S M. Parental imprinting of the mouse H19 gene[J]. Nature, 1991, 351 (6322): 153-155.
[68] ISHIDA M, MOORE G E. The role of imprinted genes in humans[J]. Mol Aspects Med, 2013, 34 (4): 826-840.
[69] KILLIAN J K, BYRD J C, JIRTLE J V, et al. M6P/IGF2R imprinting evolution in mammals[J]. Mol Cell, 2000, 5 (4): 707-716.
[70] ALLEMAN M, DOCTOR J. Genomic imprinting in plants: observations and evolutionary implications[J]. Plant Mol Biol, 2000, 43 (2-3): 147-161.
[71] REIK W, SANTOS F, DEAN W. Mammalian epigenomics: reprogramming the genome for development and therapy[J]. Theriogenology, 2003, 59 (1): 21-32.
[72] NIKAIDO I, SAITO C, MIZUNO Y, et al. Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling[J]. Genome Res, 2003, 13 (6b): 1402-1409.
[73] LUEDI P P, HARTEMINK A J, JIRTLE R L. Genome-wide prediction of imprinted murine genes[J]. Genome Res, 2005, 15 (6): 875-884.
[74] GLASER R L, RAMSAY J P, MORISON I M. The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations[J]. Nucleic Acids Res, 2006, 34 (Database issue): 29-31.
[75] BENDER J. DNA methylation and epigenetics[J]. Annu Rev Plant Biol, 2004, 55: 41-68.
[76] BRANDEIS M, KAFRI T, ARIEL M, et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse[J]. Embo j, 1993, 12 (9): 3669-3677.
[77] INOUE A, JIANG L, LU F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting[J]. Nature, 2017, 547 (7664): 419-424.
[78] WAN L B, BARTOLOMEI M S. Regulation of imprinting in clusters: noncoding RNAs versus insulators[J]. Adv Genet, 2008, 61: 207-223.
[79] MORISON I M, RAMSAY J P, SPENCER H G. A census of mammalian imprinting[J]. Trends Genet, 2005, 21 (8): 457-465.
[80] GUILLEMOT F, CASPARY T, TILGHMAN S M, et al. Genomic imprinting of Mash2, a mouse gene required for trophoblast development[J]. Nat Genet, 1995, 9 (3): 235-242.
[81] LERCHNER W, BARLOW D P. Paternal repression of the imprinted mouse Igf2r locus occurs during implantation and is stable in all tissues of the post-implantation mouse embryo[J]. Mech Dev, 1997, 61 (1-2): 141-149.
[82] KOSAKI K, KOSAKI R, CRAIGEN W J, et al. Isoform-specific imprinting of the human PEG1/MEST gene[J]. Am J Hum Genet, 2000, 66 (1): 309-312.
[83] MCMINN J, WEI M, SADOVSKY Y, et al. Imprinting of PEG1/MEST isoform 2 in human placenta[J]. Placenta, 2006, 27 (2-3): 119-126.
[84] HUANG H S, ALLEN J A, MABB A M, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons[J]. Nature, 2011, 481 (7380): 185-189.
[85] BARR M L, BERTRAM E G. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis[J]. Nature, 1949, 163 (4148): 676.
[86] LYON M F. Gene action in the X-chromosome of the mouse (Mus musculus L.)[J]. Nature, 1961, 190: 372-373.
[87] OKAMOTO I, OTTE A P, ALLIS C D, et al. Epigenetic dynamics of imprinted X inactivation during early mouse development[J]. Science, 2004, 303 (5658): 644-649.
[88] OIKAWA M, INOUE K, SHIURA H, et al. Understanding the X chromosome inactivation cycle in mice: a comprehensive view provided by nuclear transfer[J]. Epigenetics, 2014, 9 (2): 204-211.
[89] SHAO C, TAKAGI N. An extra maternally derived X chromosome is deleterious to early mouse development[J]. Development, 1990, 110 (3): 969-975.
[90] CSANKOVSZKI G, NAGY A, JAENISCH R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation[J]. J Cell Biol, 2001, 153 (4): 773-784.
[91] OGAWA Y, SUN B K, LEE J T. Intersection of the RNA interference and X-inactivation pathways[J]. Science, 2008, 320 (5881): 1336-1341.
[92] OHHATA T, HOKI Y, SASAKI H, et al. Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification[J]. Development, 2008, 135 (2): 227-235.
[93] DONOHOE M E, SILVA S S, PINTER S F, et al. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting[J]. Nature, 2009, 460 (7251): 128-132.
[94] NAVARRO P, CHAMBERS I, KARWACKI-NEISIUS V, et al. Molecular coupling of Xist regulation and pluripotency[J]. Science, 2008, 321 (5896): 1693-1695.
[95] PERNIS B, CHIAPPINO G, KELUS A S, et al. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues[J]. J Exp Med, 1965, 122 (5): 853-876.
[96] HOZUMI N, TONEGAWA S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions[J]. Proc Natl Acad Sci U S A, 1976, 73 (10): 3628-3632.
[97] CHESS A, SIMON I, CEDAR H, et al. Allelic inactivation regulates olfactory receptor gene expression[J]. Cell, 1994, 78 (5): 823-834.
[98] BIX M, LOCKSLEY R M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells[J]. Science, 1998, 281 (5381): 1352-1354.
[99] HELD W, ROLAND J, RAULET D H. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells[J]. Nature, 1995, 376 (6538): 355-358.
[100] HOLLäNDER G A, ZUKLYS S, MOREL C, et al. Monoallelic expression of the interleukin-2 locus[J]. Science, 1998, 279 (5359): 2118-2121.
[101] RHOADES K L, SINGH N, SIMON I, et al. Allele-specific expression patterns of interleukin-2 and Pax-5 revealed by a sensitive single-cell RT-PCR analysis[J]. Curr Biol, 2000, 10 (13): 789-792.
[102] RIVIèRE I, SUNSHINE M J, LITTMAN D R. Regulation of IL-4 expression by activation of individual alleles[J]. Immunity, 1998, 9 (2): 217-228.
[103] RODRIGUEZ I, FEINSTEIN P, MOMBAERTS P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system[J]. Cell, 1999, 97 (2): 199-208.
[104] GIMELBRANT A, HUTCHINSON J N, THOMPSON B R, et al. Widespread monoallelic expression on human autosomes[J]. Science, 2007, 318 (5853): 1136-1140.
[105] ZWEMER L M, ZAK A, THOMPSON B R, et al. Autosomal monoallelic expression in the mouse[J]. Genome Biol, 2012, 13 (2): R10.
[106] NIKAS G, AO A, WINSTON R M, et al. Compaction and surface polarity in the human embryo in vitro[J]. Biol Reprod, 1996, 55 (1): 32-37.
[107] ADJAYE J, HUNTRISS J, HERWIG R, et al. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells[J]. Stem Cells, 2005, 23 (10): 1514-1525.
[108] GAMAGE T K, CHAMLEY L W, JAMES J L. Stem cell insights into human trophoblast lineage differentiation[J]. Hum Reprod Update, 2016, 23 (1): 77-103.
[109] TURCO M Y, MOFFETT A. Development of the human placenta[J]. Development, 2019, 146 (22).
[110] AMIN S, NEIJTS R, SIMMINI S, et al. Cdx and T Brachyury Co-activate Growth Signaling in the Embryonic Axial Progenitor Niche[J]. Cell Rep, 2016, 17 (12): 3165-3177.
[111] EDA A, OSAWA H, YANAKA I, et al. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia[J]. J Gastroenterol, 2002, 37 (2): 94-100.
[112] SHAH S S, WU T T, TORBENSON M S, et al. Aberrant CDX2 expression in hepatocellular carcinomas: an important diagnostic pitfall[J]. Hum Pathol, 2017, 64: 13-18.
[113] BRITTEN R J, DAVIDSON E H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty[J]. Q Rev Biol, 1971, 46 (2): 111-138.
[114] CARROLL S B. Evolution at two levels: on genes and form[J]. PLoS Biol, 2005, 3 (7): e245.
[115] WRAY G A. The evolutionary significance of cis-regulatory mutations[J]. Nat Rev Genet, 2007, 8 (3): 206-216.
[116] KARAMAN M W, HOUCK M L, CHEMNICK L G, et al. Comparative analysis of gene-expression patterns in human and African great ape cultured fibroblasts[J]. Genome Res, 2003, 13 (7): 1619-1630.
[117] JACOB F. Evolution and tinkering[J]. Science, 1977, 196 (4295): 1161-1166.
[118] ROMERO I G, RUVINSKY I, GILAD Y. Comparative studies of gene expression and the evolution of gene regulation[J]. Nature Reviews Genetics, 2012, 13 (7): 505-516.
[119] STERN D L, ORGOGOZO V. The loci of evolution: how predictable is genetic evolution?[J]. Evolution, 2008, 62 (9): 2155-2177.
[120] WITTKOPP P J. Genomic sources of regulatory variation in cis and in trans[J]. Cell Mol Life Sci, 2005, 62 (16): 1779-1783.
[121] YVERT G, BREM R B, WHITTLE J, et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors[J]. Nat Genet, 2003, 35 (1): 57-64.
[122] TIROSH I, REIKHAV S, LEVY A A, et al. A yeast hybrid provides insight into the evolution of gene expression regulation[J]. Science, 2009, 324 (5927): 659-662.
[123] SHI X, NG D W, ZHANG C, et al. Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids[J]. Nat Commun, 2012, 3: 950.
[124] BAO Y, HU G J, GROVER C E, et al. Unraveling cis and trans regulatory evolution during cotton domestication[J]. Nature Communications, 2019, 10.
[125] WANG X, WERREN J H, CLARK A G. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia[J]. PLoS Biol, 2016, 14 (7): e1002500.
[126] BRYOIS J, BUIL A, EVANS D M, et al. Cis and trans effects of human genomic variants on gene expression[J]. PLoS Genet, 2014, 10 (7): e1004461.
[127] MCMANUS C J, COOLON J D, DUFF M O, et al. Regulatory divergence in Drosophila revealed by mRNA-seq[J]. Genome Research, 2010, 20 (6): 816-825.
[128] CROWLEY J J, ZHABOTYNSKY V, SUN W, et al. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance[J]. Nat Genet, 2015, 47 (4): 353-360.
[129] OHISHI H, YEUNG W K A, UNOKI M, et al. Characterization of genetic-origin-dependent monoallelic expression in mouse embryonic stem cells[J]. Genes to Cells, 2020, 25 (1): 54-64.
[130] ZHENG-BRADLEY X, RUNG J, PARKINSON H, et al. Large scale comparison of global gene expression patterns in human and mouse[J]. Genome Biology, 2010, 11 (12): R124.
[131] ANDERGASSEN D, DOTTER C P, WENZEL D, et al. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression[J]. Elife, 2017, 6.
[132] CALAWAY J D, LENARCIC A B, DIDION J P, et al. Genetic Architecture of Skewed X Inactivation in the Laboratory Mouse[J]. Plos Genetics, 2013, 9 (10).
[133] XU J, CARTER A C, GENDREL A V, et al. Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells[J]. Nature Genetics, 2017, 49 (3): 377-386.
[134] PAYNE J L, KHALID F, WAGNER A. RNA-mediated gene regulation is less evolvable than transcriptional regulation[J]. Proc Natl Acad Sci U S A, 2018, 115 (15): E3481-e3490.
[135] LYNCH V J, MAY G, WAGNER G P. Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB[J]. Nature, 2011, 480 (7377): 383-386.
[136] VILLAR D, FLICEK P, ODOM D T. Evolution of transcription factor binding in metazoans - mechanisms and functional implications[J]. Nature Reviews Genetics, 2014, 15 (4): 221-233.
[137] NITTA K R, JOLMA A, YIN Y, et al. Conservation of transcription factor binding specificities across 600 million years of bilateria evolution[J]. Elife, 2015, 4.
[138] SLODKOWICZ G, GOLDMAN N. Integrated structural and evolutionary analysis reveals common mechanisms underlying adaptive evolution in mammals[J]. Proc Natl Acad Sci U S A, 2020, 117 (11): 5977-5986.
[139] OLSON-MANNING C F, WAGNER M R, MITCHELL-OLDS T. Adaptive evolution: evaluating empirical support for theoretical predictions[J]. Nat Rev Genet, 2012, 13 (12): 867-877.

所在学位评定分委会
生物系
国内图书分类号
Q111
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353146
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
梁卫政. 大鼠和小鼠基因转录调控的顺式反式作用机制研究[D]. 哈尔滨. 哈尔滨工业大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749306-梁卫政-生物系.pdf(14195KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁卫政]的文章
百度学术
百度学术中相似的文章
[梁卫政]的文章
必应学术
必应学术中相似的文章
[梁卫政]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。