[1] SEGERT J A, GISSELBRECHT S S, BULYK M L. Transcriptional Silencers: Driving Gene Expression with the Brakes On[J]. Trends Genet, 2021, 37(6):514-527.
[2] NORD A S, WEST A E. Neurobiological functions of transcriptional enhancers[J]. Nat Neurosci, 2020, 23(1):5-14.
[3] ZENG W, MIN X, JIANG R. EnDisease: a manually curated database for enhancer-disease associations[J]. Database (Oxford), 2019, 2019:baz020.
[4] RICE G, REBEIZ M. Evolution: How Many Phenotypes Do Regulatory Mutations Affect?[J]. Curr Biol, 2019, 29(1):R21-R23.
[5] CHENG C K, WONG T H Y, YUNG Y L, et al. Investigation of the Transcriptional Role of a RUNX1 Intronic Silencer by CRISPR/Cas9 Ribonucleoprotein in Acute Myeloid Leukemia Cells[J]. J Vis Exp, 2019, (151):e60130.
[6] KARIMI M M, GOYAL P, MAKSAKOVA I A, et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs[J]. Cell Stem Cell, 2011, 8(6):676-687.
[7] MATHARU N, AHITUV N. Modulating gene regulation to treat genetic disorders[J]. Nat Rev Drug Discov, 2020, 19(11):757-775.
[8] OGBOURNE S, ANTALIS T M. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes[J]. Biochem J, 1998, 331 ( Pt 1):1-14.
[9] SANKARAN V G, XU J, BYRON R, et al. A functional element necessary for fetal hemoglobin silencing[J]. N Engl J Med, 2011, 365(9):807-814.
[10] OGIYAMA Y, SCHUETTENGRUBER B, PAPADOPOULOS G L, et al. Polycomb-Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development[J]. Mol Cell, 2018, 71(1):73-88 e75.
[11] NGAN C Y, WONG C H, TJONG H, et al. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development[J]. Nat Genet, 2020, 52(3):264-272.
[12] GOLDMAN J A, POSS K D. Gene regulatory programmes of tissue regeneration[J]. Nat Rev Genet, 2020, 21(9):511-525.
[13] HABERLE V, STARK A. Eukaryotic core promoters and the functional basis of transcription initiation[J]. Nat Rev Mol Cell Biol, 2018, 19(10):621-637.
[14] HABERLE V, ARNOLD C D, PAGANI M, et al. Transcriptional cofactors display specificity for distinct types of core promoters[J]. Nature, 2019, 570(7759):122-126.
[15] CALO E, WYSOCKA J. Modification of enhancer chromatin: what, how, and why?[J]. Mol Cell, 2013, 49(5):825-837.
[16] SHLYUEVA D, STAMPFEL G, STARK A. Transcriptional enhancers: from properties to genome-wide predictions[J]. Nat Rev Genet, 2014, 15(4):272-286.
[17] CUBENAS-POTTS C, ROWLEY M J, LYU X, et al. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture[J]. Nucleic Acids Res, 2017, 45(4):1714-1730.
[18] WEI G, LIU D, LIANG C. Chromatin domain boundaries insulators and beyond[J]. Cell Research, 2005, 15:292-300.
[19] BRASSET E, VAURY C. Insulators are fundamental components of the eukaryotic genomes[J]. Heredity (Edinb), 2005, 94(6):571-576.
[20] DEBRUYNE D N, DRIES R, SENGUPTA S, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells[J]. Nature, 2019, 572(7771):676-680.
[21] OZDEMIR I, GAMBETTA M C. The Role of Insulation in Patterning Gene Expression[J]. Genes (Basel), 2019, 10(10):767.
[22] TARJAN D R, FLAVAHAN W A, BERNSTEIN B E. Epigenome editing strategies for the functional annotation of CTCF insulators[J]. Nat Commun, 2019, 10(1):4258.
[23] ARZATE-MEJIA R G, JOSUE CERECEDO-CASTILLO A, GUERRERO G, et al. In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila[J]. Nat Commun, 2020, 11(1):894.
[24] BRAND A H, BREEDEN L, ABRAHAM J, et al. Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer[J]. Cell, 1985, 41(1):41-48.
[25] LAIMINS L, HOLMGREN-KöNIG M, KHOURY G. Transcriptional “silencer” element in rat repetitive sequences associated with the rat insulin 1 gene locus[J]. Proc Natl Acad Sci U S A, 1986, 83(10):3151-3155.
[26] ZHAO L, XIE L, ZHANG Q, et al. Integrative analysis of reference epigenomes in 20 rice varieties[J]. Nat Commun, 2020, 11(1):2658.
[27] ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nat Rev Genet, 2020, 21(2):71-87.
[28] ANDERSSON R, SANDELIN A, DANKO C G. A unified architecture of transcriptional regulatory elements[J]. Trends Genet, 2015, 31(8):426-433.
[29] GISSELBRECHT S S, PALAGI A, KURLAND J V, et al. Transcriptional Silencers in Drosophila Serve a Dual Role as Transcriptional Enhancers in Alternate Cellular Contexts[J]. Mol Cell, 2020, 77(2):324-337 e328.
[30] HALFON M S. Silencers, Enhancers, and the Multifunctional Regulatory Genome[J]. Trends Genet, 2020, 36(3):149-151.
[31] SAWADA S, SCARBOROUGH J D, KILLEEN N, et al. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development[J]. Cell, 1994, 77:917-929.
[32] KOJO S, YASMIN N, MUROI S, et al. Runx-dependent and silencer-independent repression of a maturation enhancer in the Cd4 gene[J]. Nat Commun, 2018, 9(1):3593.
[33] MORI N, SCHOENHERR C, VANDENBERGH D J, et al. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells[J]. Neuron, 1992, 9:45-54.
[34] BESSIS A, CHAMPTIAUX N, CHATELIN L, et al. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain[J]. Proc Natl Acad Sci U S A, 1997, 94(11):5906-5911.
[35] YE J, GHOSH P, CIPPITELLI M, et al. Characterization of a silencer regulatory element in the human interferon-gamma promoter[J]. J Biol Chem, 1994, 269(41):25728-25734.
[36] RAY B K, DHAR S, SHAKYA A, et al. Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression[J]. Proc Natl Acad Sci U S A, 2011, 108(1):103-108.
[37] SUN N, ZHAO H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing[J]. Biotechnol Bioeng, 2013, 110(7):1811-1821.
[38] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278.
[39] CROCKER J, STERN D L. TALE-mediated modulation of transcriptional enhancers in vivo[J]. Nat Methods, 2013, 10(8):762-767.
[40] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451.
[41] AKHTAR W, DE JONG J, PINDYURIN A V, et al. Chromatin position effects assayed by thousands of reporters integrated in parallel[J]. Cell, 2013, 154(4):914-927.
[42] DONI JAYAVELU N, JAJODIA A, MISHRA A, et al. Candidate silencer elements for the human and mouse genomes[J]. Nat Commun, 2020, 11(1):1061.
[43] PANG B, SNYDER M P. Systematic identification of silencers in human cells[J]. Nat Genet, 2020, 52(3):254-263.
[44] DELLA ROSA M, SPIVAKOV M. Silencers in the spotlight[J]. Nat Genet, 2020, 52(3):244-245.
[45] PENGELLY A R, COPUR O, JACKLE H, et al. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb[J]. Science, 2013, 339(6120):698-699.
[46] CATARINO R R, STARK A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation[J]. Genes Dev, 2018, 32(3-4):202-223.
[47] BOSSELUT R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals[J]. Nat Rev Immunol, 2004, 4(7):529-540.
[48] CORCES M R, GRANJA J M, SHAMS S, et al. The chromatin accessibility landscape of primary human cancers[J]. Science, 2018, 362(6413).
[49] GUAN X, DENG H, CHOI U L, et al. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis[J]. Oncogene, 2020, 39(48):7127-7141.
[50] SOTTNIK J L, VANDERLINDEN L, JOSHI M, et al. Androgen Receptor Regulates CD44 Expression in Bladder Cancer[J]. Cancer Res, 2021, 81(11):2833-2846.
[51] MATHARU N, RATTANASOPHA S, TAMURA S, et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency[J]. Science, 2019, 363(6424).
[52] WOODRUFF K A, ROSENBLATT J D, MOORE T B, et al. Cell type-specific activity of the N-myc promoter in human neuroblastoma cells is mediated by a downstream silencer[J]. Oncogene, 1995, 10(7):1335-1341.
[53] YE J, YOUNG H A, ZHANG X, et al. Regulation of a cell type-specific silencer in the human interleukin-3 gene promoter by the transcription factor YY1 and an AP2 sequence-recognizing factor[J]. J Biol Chem, 1999, 274(38):26661-26667.
[54] NATESAN S, GILMAN M Z. DNA bending and orientation-dependent function of YY1 in the c-fos promoter[J]. Genes Dev, 1993, 7(12B):2497-2509.
[55] ZOU Y, YU Q, CHIU Y H, et al. Position effect on the directionality of silencer function in Saccharomyces cerevisiae[J]. Genetics, 2006, 174(1):203-213.
[56] NAKABAYASHI H, HASHIMOTO T, MIYAO Y, et al. A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma[J]. Mol Cell Biol, 1991, 11(12):5885-5893.
[57] CHEN D, MCKEARIN D M. A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell[J]. Development, 2003, 130(6):1159-1170.
[58] TRUJILLO M A, SAKAGASHIRA M, EBERHARDT N L. The human growth hormone gene contains a silencer embedded within an Alu repeat in the 3'-flanking region[J]. Mol Endocrinol, 2006, 20(10):2559-2575.
[59] BIRE S, CASTERET S, PIEGU B, et al. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2[J]. PLoS Genet, 2016, 12(3):e1005902.
[60] ORTIZ E M, DUSETTI N J, DAGORN J C, et al. Characterization of a silencer regulatory element in the rat PAP I gene which confers tissue-specific expression and is promoter-dependent[J]. Archives of Biochemistry and Biophysics, 1997, 340(1):111-116.
[61] KIM M K, LESOONWOOD L A, WEINTRAUB B D, et al. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and possesses silencing activity in its alanine-rich domain[J]. Molecular and Cellular Biology, 1996, 16(8):4366-4377.
[62] STARK K, KIRK D L, SCHMITT R. Two enhancers and one silencer located in the introns of regA control somatic cell differentiation in Volvox carteri[J]. Genes Dev, 2001, 15(11):1449-1460.
[63] DONG J M, LIM L. The human neuronal alpha 1-chimaerin gene contains a position-dependent negative regulatory element in the first exon[J]. Neurochem Res, 1996, 21(9):1023-1030.
[64] LI Y P, CHEN W, STASHENKO P. Characterization of a silencer element in the first exon of the human osteocalcin gene[J]. Nucleic Acids Res, 1995, 23(24):5064-5072.
[65] YANNOUTSOS N, BARRETO V, MISULOVIN Z, et al. A cis element in the recombination activating gene locus regulates gene expression by counteracting a distant silencer[J]. Nature Immunology, 2004, 5(4):443-450.
[66] BANDARA T, OTSUKA K, MATSUBARA S, et al. A dual enhancer-silencer element, DES-K16, in mouse spermatocyte-derived GC-2spd(ts) cells[J]. Biochem Biophys Res Commun, 2020, 534:1007-1012.
[67] LI Z, WANG M, LIN K, et al. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements[J]. Genome Biol, 2019, 20(1):139.
[68] HEINTZMAN N D, STUART R K, HON G, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome[J]. Nature Genetics, 2007, 39(3):311-318.
[69] RADA-IGLESIAS A, BAJPAI R, SWIGUT T, et al. A unique chromatin signature uncovers early developmental enhancers in humans[J]. Nature, 2011, 470(7333):279-283.
[70] MOZZETTA C, BOYARCHUK E, PONTIS J, et al. Sound of silence: the properties and functions of repressive Lys methyltransferases[J]. Nat Rev Mol Cell Biol, 2015, 16(8):499-513.
[71] PETERS A H F M, MERMOUD J E, O'CARROLL D, et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin[J]. Nature Genetics, 2002, 30(1):77-80.
[72] YOUNG M D, WILLSON T A, WAKEFIELD M J, et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity[J]. Nucleic Acids Res, 2011, 39(17):7415-7427.
[73] STENDER J D, PASCUAL G, LIU W, et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20[J]. Mol Cell, 2012, 48(1):28-38.
[74] HUANG D, PETRYKOWSKA H M, MILLER B F, et al. Identification of human silencers by correlating cross-tissue epigenetic profiles and gene expression[J]. Genome Res, 2019, 29(4):657-667.
[75] MULLER J. Transcriptional silencing by the Polycomb protein in Drosophila embryos[J]. EMBO J, 1995, 14(6):1209-1220.
[76] GUO Y, ZHAO S, WANG G G. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 'Readout', and Phase Separation-Based Compaction[J]. Trends Genet, 2021, 37(6):547-565.
[77] TANG Y, JIA Z, XU H, et al. Mechanism of REST/NRSF regulation of clustered protocadherin alpha genes[J]. Nucleic Acids Res, 2021, 49(8):4506-4521.
[78] TANIUCHI I, LITTMAN D R. Epigenetic gene silencing by Runx proteins[J]. Oncogene, 2004, 23(24):4341-4345.
[79] RIGGS K J, SALEQUE S, WONG K K, et al. Yin-yang 1 activates the c-myc promoter[J]. Mol Cell Biol, 1993, 13(12):7487-7495.
[80] WU G, LAI E, HUANG N, et al. Oct-1 and CCAATenhancer-binding protein (CEBP) bind to overlapping elements within the interleukin-8 promoter[J]. J Biol Chem, 1997, 272(4):2396-2403.
[81] CAI Y, ZHANG Y, LOH Y P, et al. H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions[J]. Nat Commun, 2021, 12(1):719.
[82] FRIEDMAN R Z, GRANAS D M, MYERS C A, et al. Information content differentiates enhancers from silencers in mouse photoreceptors[J]. Elife, 2021, 10:e67403.
[83] LEVINE L, MANLEY J L. Transcriptional repression of eukaryotic promoters[J]. cell, 1989, 59:405-408.
[84] TIWARI V K, MCGARVEY K M, LICCHESI J D, et al. PcG proteins, DNA methylation, and gene repression by chromatin looping[J]. PLoS Biol, 2008, 6(12):2911-2927.
[85] LIN X, LEICHER R, LIU S, et al. Cooperative DNA looping by PRC2 complexes[J]. Nucleic Acids Res, 2021, 49(11):6238-6248.
[86] HEENAN P R, WANG X, GOODING A R, et al. Bending and looping of long DNA by Polycomb repressive complex 2 revealed by AFM imaging in liquid[J]. Nucleic Acids Res, 2020, 48(6):2969-2981.
[87] ARNOLD R, BURCIN M, KAISER B, et al. DNA bending by the silencer protein NeP1 is modULATED BY TR and RXR[J]. Nucleic Acids Research, 1996, 24(14):2640-2647.
[88] DREW L R, TANG D C, BERG P E, et al. The role of trans-acting factors and DNA-bending in the silencing of human beta-globin gene expression[J]. Nucleic Acids Res, 2000, 28(14):2823-2830.
[89] YANG H, LUAN Y, LIU T, et al. A map of cis-regulatory elements and 3D genome structures in zebrafish[J]. Nature, 2020, 588(7837):337-343.
[90] GALUPA R, NORA E P, WORSLEY-HUNT R, et al. A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary[J]. Mol Cell, 2020, 77(2):352-367.e358.
[91] CAVALLI G. A RING to rule them all: RING1 as silencer and activator[J]. Dev Cell, 2014, 28(1):1-2.
[92] WHITE M A, KWASNIESKI J C, MYERS C A, et al. A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors[J]. Cell Rep, 2016, 17(5):1247-1254.
[93] SHI Y, SETO E, CHANG L S, et al. Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein[J]. Cell, 1991, 67(2):377-388.
[94] PANKRATZ M, SEIFERT E, GERWIN N, et al. Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the Drosophila embryo[J]. Cell, 1990, 61(2):309-317.
[95] LICHT J D, GROSSEL M J, FIGGE J, et al. Drosophila Krüppel protein is a transcriptional represser[J]. Nature, 1990, 346(6279):76-79.
[96] SAUER F, JäCKLE H. Concentration-dependent transcriptional activation or repression by Krüppel from a single binding site[J]. Nature, 1991, 353(6344):563-566.
[97] YAN W, CHEN D, SCHUMACHER J, et al. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis[J]. Nat Commun, 2019, 10(1):1705.
[98] SIMA J, CHAKRABORTY A, DILEEP V, et al. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication[J]. Cell, 2019, 176(4):816-830.e818.
[99] TANIUCHI I, SUNSHINE M J, FESTENSTEIN R, et al. Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation[J]. Molecular Cell, 2002, 10(5):1083-1096.
[100] ZOU Y-R, SUNSHINE M-J, TANIUCHI I, et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage[J]. Nature Genetics, 2001, 29(3):332-336.
[101] AVISAR N, SHIFTAN L, BEN-DROR I, et al. A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids[J]. J Biol Chem, 1999, 274(16):11399-11407.
[102] KONDO T, ISONO K, KONDO K, et al. Polycomb potentiates meis2 activation in midbrain by mediating interaction of the promoter with a tissue-specific enhancer[J]. Dev Cell, 2014, 28(1):94-101.
[103] MCEACHERN L A, LLOYD V K. The maize b1 paramutation control region causes epigenetic silencing in Drosophila melanogaster[J]. Mol Genet Genomics, 2012, 287(7):591-606.
[104] DREWELL R A, GODDARD C J, THOMAS J O, et al. Methylation-dependent silencing at the H19 imprinting control region by MeCP2[J]. Nucleic Acids Research, 2002, 30(5):1139-1144.
[105] LYKO F, BRENTON J D, SURANI M A, et al. An imprinting element from the mouse H19 locus functions as a silencer in Drosophila[J]. Nature Genetics, 1997, 16(2):171-173.
[106] ARNEY K L, BAE E, OLSEN C, et al. The human and mouse H19 imprinting control regions harbor an evolutionarily conserved silencer element that functions on transgenes in Drosophila[J]. Dev Genes Evol, 2006, 216(12):811-819.
[107] BAI X, HUANG Y, HU Y, et al. Duplication of an upstream silencer of FZP increases grain yield in rice[J]. Nat Plants, 2017, 3(11):885-893.
[108] CHEN Q, DENG X, HU X, et al. Breast Cancer Risk-Associated SNPs in the mTOR Promoter Form De Novo KLF5- and ZEB1-Binding Sites that Influence the Cellular Response to Paclitaxel[J]. Mol Cancer Res, 2019, 17(11):2244-2256.
[109] RAICH N, PAPAYANNOPOULOU T, STAMATOYANNOPOULOS G, et al. Demonstration of a human epsilon-globin gene silencer with studies in transgenic mice[J]. Blood, 1992, 79(4):861-864.
[110] CONSTANCIA M, DEAN W, LOPES S, et al. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19[J]. Nat Genet, 2000, 26(2):203-206.
[111] KRASNOPOLSKY S, KUZMINA A, TAUBE R. Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency[J]. PLoS Pathog, 2020, 16(9):e1008834.
[112] ROSCITO J G, SAMEITH K, PARRA G, et al. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution[J]. Nat Commun, 2018, 9(1):4737.
[113] JOHNSON W C, ORDWAY A J, WATADA M, et al. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species[J]. PLoS Genet, 2015, 11(6):e1005279.
[114] HARDISON R C, TAYLOR J. Genomic approaches towards finding cis-regulatory modules in animals[J]. Nat Rev Genet, 2012, 13(7):469-483.
[115] ROBERTSON G, HIRST M, BAINBRIDGE M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing[J]. Nat Methods, 2007, 4:651-657.
[116] GREIL F, MOORMAN C, VAN STEENSEL B. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase[J]. Methods Enzymol, 2006, 410:342-359.
[117] KLEMM S L, SHIPONY Z, GREENLEAF W J. Chromatin accessibility and the regulatory epigenome[J]. Nat Rev Genet, 2019, 20(4):207-220.
[118] BOYLE A P, DAVIS S, SHULHA H P, et al. High-resolution mapping and characterization of open chromatin across the genome[J]. Cell, 2008, 132(2):311-322.
[119] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10(12):1213-1218.
[120] SHASHIKANT T, ETTENSOHN C A. Genome-wide analysis of chromatin accessibility using ATAC-seq[J]. Methods Cell Biol, 2019, 151:219-235.
[121] LIEBERMAN-AIDEN E, VAN BERKUM N L, WILLIAMS L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J]. Science (New York, NY), 2009, 326(5950):289-293.
[122] FULLWOOD M J, LIU M H, PAN Y F, et al. An oestrogen-receptor-α-bound human chromatin interactome[J]. Nature, 2009, 462(7269):58-64.
[123] ZHENG M, TIAN S Z, CAPURSO D, et al. Multiplex chromatin interactions with single-molecule precision[J]. Nature, 2019, 566(7745):558-562.
[124] MELNIKOV A, MURUGAN A, ZHANG X, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay[J]. Nature Biotechnology, 2012, 30(3):271-277.
[125] INOUE F, AHITUV N. Decoding enhancers using massively parallel reporter assays[J]. Genomics, 2015, 106(3):159-164.
[126] INOUE F, KREIMER A, ASHUACH T, et al. Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction[J]. Cell Stem Cell, 2019, 25(5):713-727.e710.
[127] WANG X, HE L, GOGGIN S M, et al. High-resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides in human[J]. Nat Commun, 2018, 9(1):5380.
[128] ARNOLD C D, NEMCKO F, WOODFIN A R, et al. A high-throughput method to identify trans-activation domains within transcription factor sequences[J]. EMBO J, 2018, 37(16).
[129] ARNOLD C D, GERLACH D, STELZER C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq[J]. Science, 2013, 339(6123):1074-1077.
[130] NEUMAYR C, PAGANI M, STARK A, et al. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries[J]. Curr Protoc Mol Biol, 2019, 128(1):e105.
[131] KWASNIESKI J C, MOGNO I, MYERS C A, et al. Complex effects of nucleotide variants in a mammalian cis-regulatory element[J]. Proc Natl Acad Sci U S A, 2012, 109(47):19498-19503.
[132] MASTON G A, EVANS S K, GREEN M R. Transcriptional regulatory elements in the human genome[J]. Annu Rev Genomics Hum Genet, 2006, 7:29-59.
[133] GASPERINI M, HILL A J, MCFALINE-FIGUEROA J L, et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens[J]. Cell, 2019, 176(1-2):377-390.e319.
[134] RAJAGOPAL N, SRINIVASAN S, KOOSHESH K, et al. High-throughput mapping of regulatory DNA[J]. Nat Biotechnol, 2016, 34(2):167-174.
[135] ZENG W, CHEN S, CUI X, et al. SilencerDB: a comprehensive database of silencers[J]. Nucleic Acids Res, 2020, 49(D1):D221-D228.
[136] GHANDI M, MOHAMMAD-NOORI M, GHAREGHANI N, et al. gkmSVM: an R package for gapped-kmer SVM[J]. Bioinformatics, 2016, 32(14):2205-2207.
[137] BARAKAT T S, HALBRITTER F, ZHANG M, et al. Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells[J]. Cell Stem Cell, 2018, 23(2):276-288.e278.
[138] ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS)[J]. Genome Biol, 2008, 9(9):R137.
[139] HEINZ S, BENNER C, SPANN N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities[J]. Mol Cell, 2010, 38(4):576-589.
[140] BUERGER A. BasicSTARRseq: Basic peak calling on STARR-seq data[EB/OL]. 2019: (2021-10-26)
[2022-02-23]. http://www.bioconductor.org/packages/release/bioc/html/BasicSTARRseq.html.
[141] LEE D, SHI M, MORAN J, et al. STARRPeaker: uniform processing and accurate identification of STARR-seq active regions[J]. Genome Biol, 2020, 21(1):298.
[142] ANDERS S, PYL P T, HUBER W. HTSeq--a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2):166-169.
[143] LI W, XU H, XIAO T, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens[J]. Genome Biol, 2014, 15(12):554.
[144] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.
[145] ANDERS S, HUBER W. Differential expression analysis for sequence count data[J]. Genome Biol, 2010, 11(10):R106.
[146] GASPAR J M, HART R P. DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data[J]. BMC Bioinformatics, 2017, 18(1):528.
[147] PARK Y, WU H. Differential methylation analysis for BS-seq data under general experimental design[J]. Bioinformatics, 2016, 32(10):1446-1453.
[148] FAROOQ A, GRONMYR S, ALI O, et al. HMST-Seq-Analyzer: A new python tool for differential methylation and hydroxymethylation analysis in various DNA methylation sequencing data[J]. Comput Struct Biotechnol J, 2020, 18:2877-2889.
[149] ASHOOR H, LOUIS-BRENNETOT C, JANOUEIX-LEROSEY I, et al. HMCan-diff: a method to detect changes in histone modifications in cells with different genetic characteristics[J]. Nucleic Acids Res, 2017, 45(8):e58.
[150] KIM Y S, JOHNSON G D, SEO J, et al. Correcting signal biases and detecting regulatory elements in STARR-seq data[J]. Genome Res, 2021, 31(5):877-889.
[151] LUN A T, SMYTH G K. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows[J]. Nucleic Acids Res, 2016, 44(5):e45.
[152] LIENHARD M, GRIMM C, MORKEL M, et al. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments[J]. Bioinformatics, 2014, 30(2):284-286.
[153] ZHANG Y, LIN Y H, JOHNSON T D, et al. PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data[J]. Bioinformatics, 2014, 30(18):2568-2575.
[154] SHEN L, SHAO N Y, LIU X, et al. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates[J]. PLoS One, 2013, 8(6):e65598.
[155] CREMONA M A, XU H, MAKOVA K D, et al. Functional data analysis for computational biology[J]. Bioinformatics, 2019, 35(17):3211-3213.
[156] THOMAS R, THOMAS S, HOLLOWAY A K, et al. Features that define the best ChIP-seq peak calling algorithms[J]. Brief Bioinform, 2017, 18(3):441-450.
[157] YAN F, POWELL D R, CURTIS D J, et al. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis[J]. Genome Biol, 2020, 21(1):22.
[158] WU H, JI H. PolyaPeak: detecting transcription factor binding sites from ChIP-seq using peak shape information[J]. PLoS One, 2014, 9(3):e89694.
[159] ZHANG X, ROBERTSON G, KRZYWINSKI M, et al. PICS: probabilistic inference for ChIP-seq[J]. Biometrics, 2011, 67(1):151-163.
[160] STRINO F, LAPPE M. Identifying peaks in *-seq data using shape information[J]. BMC Bioinformatics, 2016, 17 Suppl 5:206.
[161] QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26(6):841-842.
[162] LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3):R25.
[163] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
[164] TEAM R C. R: A language and environment for statistical computing.[EB/OL]. R Foundation for Statistical Computing, 2018 (2022-02-28)
[2022-02-23]. https://www.R-project.org/.
[165] MACHANICK P, BAILEY T L. MEME-ChIP: motif analysis of large DNA datasets[J]. Bioinformatics, 2011, 27(12):1696-1697.
[166] KENT W J, SUGNET C W, FUREY T S, et al. The human genome browser at UCSC[J]. Genome Res, 2002, 12(6):996-1006.
[167] WICKHAM H. ggplot2: Elegant Graphics for Data Analysis[EB/OL]. Springer-Verlag New York, 2016: (2021-06-25)
[2022-02-23]. https://ggplot2.tidyverse.org.
[168] YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.
[169] YU G, WANG L G, HE Q Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization[J]. Bioinformatics, 2015, 31(14):2382-2383.
[170] ZHU L J, GAZIN C, LAWSON N D, et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data[J]. BMC Bioinformatics, 2010, 11:237.
[171] NAVARRO GONZALEZ J, ZWEIG A S, SPEIR M L, et al. The UCSC Genome Browser database: 2021 update[J]. Nucleic Acids Res, 2021, 49(D1):D1046-D1057.
[172] CHARRAD M, GHAZZALI N, BOITEAU V, et al. Nbclust: An R Package for Determining the Relevant Number of Clusters in a Data Set[J]. J Stat Softw, 2014, 61(6):1-36.
[173] RAMIREZ F, RYAN D P, GRUNING B, et al. deepTools2: a next generation web server for deep-sequencing data analysis[J]. Nucleic Acids Res, 2016, 44(W1):W160-165.
[174] DE HOON M J, IMOTO S, NOLAN J, et al. Open source clustering software[J]. Bioinformatics, 2004, 20(9):1453-1454.
[175] SALDANHA A J. Java Treeview--extensible visualization of microarray data[J]. Bioinformatics, 2004, 20(17):3246-3248.
[176] THORVALDSDOTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration[J]. Brief Bioinform, 2013, 14(2):178-192.
[177] BROAD I. Picard Toolkit[EB/OL]. Broad Institute, 2019: (2022-01-04)
[2022-02-23]. https://broadinstitute.github.io/picard/.
[178] ILLUMINA. bcl2fastq [EB/OL]. Illumina, 2019: (2019-02-01)
[2022-02-23]. https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html.
[179] THURMOND J, GOODMAN J L, STRELETS V B, et al. FlyBase 2.0: the next generation[J]. Nucleic Acids Res, 2019, 47(D1):D759-D765.
[180] CELNIKER S E, DILLON L A L, GERSTEIN M B, et al. Unlocking the secrets of the genome[J]. Nature, 2009, 459(7249):927-930.
[181] CHERBAS L, WILLINGHAM A, ZHANG D, et al. The transcriptional diversity of 25 Drosophila cell lines[J]. Genome Res, 2011, 21(2):301-314.
[182] CHINTAPALLI V R, WANG J, DOW J A T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease[J]. Nature Genetics, 2007, 39(6):715-720.
[183] NIU L, SHEN W, HUANG Y, et al. Amplification-free library preparation with SAFE Hi-C uses ligation products for deep sequencing to improve traditional Hi-C analysis[J]. Commun Biol, 2019, 2:267.
[184] SEXTON T, YAFFE E, KENIGSBERG E, et al. Three-dimensional folding and functional organization principles of the Drosophila genome[J]. Cell, 2012, 148(3):458-472.
[185] KHARCHENKO P V, ALEKSEYENKO A A, SCHWARTZ Y B, et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster[J]. Nature, 2011, 471(7339):480-485.
[186] SCHOENFELDER S, FRASER P. Long-range enhancer-promoter contacts in gene expression control[J]. Nat Rev Genet, 2019, 20(8):437-455.
[187] RICCI W A, LU Z, JI L, et al. Widespread long-range cis-regulatory elements in the maize genome[J]. Nat Plants, 2019, 5(12):1237-1249.
[188] DELANEAU O, ZAZHYTSKA M, BOREL C, et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression[J]. Science, 2019, 364(6439):eaat8266.
[189] GREENWALD W W, LI H, BENAGLIO P, et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression[J]. Nat Commun, 2019, 10(1):1054.
[190] NICETTO D, ZARET K S. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance[J]. Curr Opin Genet Dev, 2019, 55:1-10.
[191] JIANG J G, DEFRANCES M C, MACHEN J, et al. The repressive function of AP2 transcription factor on the hepatocyte growth factor gene promoter[J]. Biochem Biophys Res Commun, 2000, 272(3):882-886.
[192] SCHNEIDERMAN J I, GOLDSTEIN S, AHMAD K. Perturbation analysis of heterochromatin-mediated gene silencing and somatic inheritance[J]. PLoS Genet, 2010, 6(9):e1001095.
[193] GRAY S, LEVINE M. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila[J]. Gene Dev, 1996, 10(6):700-710.
[194] ANDERSON J, SALZER C L, KUMAR J P. Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila[J]. Dev Biol, 2006, 297(2):536-549.
[195] CHONG J H A, TAPIARAMIREZ J, KIM S, et al. Rest - a Mammalian Silencer Protein That Restricts Sodium-Channel Gene-Expression to Neurons[J]. Cell, 1995, 80(6):949-957.
[196] STROSCHEIN-STEVENSON S L, FOLEY E, O'FARRELL P H, et al. Identification of Drosophila Gene Products Required for Phagocytosis of Candida albicans[J]. PLOS Biology, 2005, 4(1):e4.
[197] DIXON J R, SELVARAJ S, YUE F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions[J]. Nature, 2012, 485(7398):376-380.
[198] AN L, YANG T, YANG J, et al. OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries[J]. Genome Biol, 2019, 20(1):282.
[199] WANG G, MENG Q, XIA B, et al. TADsplimer reveals splits and mergers of topologically associating domains for epigenetic regulation of transcription[J]. Genome Biol, 2020, 21(1):84.
[200] SANTINI S, BOORE J L, MEYER A. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters[J]. Genome Res, 2003, 13(6A):1111-1122.
[201] ARNOLD C D, GERLACH D, SPIES D, et al. Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution[J]. Nat Genet, 2014, 46(7):685-692.
[202] RAO S S, HUNTLEY M H, DURAND N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 2014, 159(7):1665-1680.
[203] HOWER V, EVANS S N, PACHTER L. Shape-based peak identification for ChIP-Seq[J]. BMC Bioinformatics, 2011, 12:15.
[204] JOHNSON G D, BARRERA A, MCDOWELL I C, et al. Human genome-wide measurement of drug-responsive regulatory activity[J]. Nat Commun, 2018, 9(1):5317.
[205] CONSORTIUM E P. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414):57-74.
[206] (NCBI) N C F B I. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information[EB/OL]. National Center for Biotechnology Information, 1988:
[2022-2-23]. https://www.ncbi.nlm.nih.gov/.
[207] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4):357-359.
[208] DANECEK P, BONFIELD J K, LIDDLE J, et al. Twelve years of SAMtools and BCFtools[J]. Gigascience, 2021, 10(2):giab008.
[209] DAVIS C A, HABERLAND M, ARNOLD M A, et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells[J]. Mol Cell Biol, 2006, 26(7):2626-2636.
[210] WU Y, FERGUSON J E, 3RD, WANG H, et al. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation[J]. J Mol Cell Cardiol, 2008, 44(1):47-58.
[211] ZHAO C, MENG A. Sp1-like transcription factors are regulators of embryonic development in vertebrates[J]. Dev Growth Differ, 2005, 47(4):201-211.
修改评论