中文版 | English
题名

钯、铜催化手性磷化合物的不对称合成研究

其他题名
ASYMMETRIC SYNTHESIS OF CHIRAL PHOSPHORUS COMPOUNDS BY PALLADIUM OR COPPER-CATALYSIS
姓名
姓名拼音
YANG Zhiping
学号
11849568
学位类型
博士
学位专业
081701 化学工程
学科门类/专业学位类别
08 工学
导师
谭斌
导师单位
化学系;化学系
论文答辩日期
2022-05-17
论文提交日期
2022-07-08
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

手性磷化合物广泛存在于自然界中,具有重要的研究价值,在药物化学、有机合成化学、生命科学等领域具有重要的应用价值和潜能。因此,手性磷化合物的合成方法学研究一直是有机合成中的热点。随着不对称催化蓬勃发展,不对称氢官能化已经成为现代有机合成的重要组成部分,是制备手性化合物最为有效的方法之一。本论文主要研究了钯催化炔烃和联烯的不对称膦氢化反应,高效、高对映选择性的合成具有磷手性的烯基次膦酸酯和碳手性的烯丙基膦氧;同时对铜催化肉桂基膦酸衍生物的不对称氢胺化反应进行研究,实现了手性γ-氨基膦酸衍生物的高效合成。主要内容如下:

Pd2(dba)3和手性双膦配体(R, R)-QuinoxP*催化下,以芳基次膦酸酯作为膦氢化试剂,实现了炔烃的不对称膦氢化反应,以28-94%产率和33-86%对映选择性合成具有磷手性的烯基次膦酸酯。根据单晶衍射确定产物的磷手性中心的绝对构型为R。根据氘代实验的结果,确定反应过程中氧化加成、炔烃的氢钯化和配体交换过程为可逆过程,提出可能的膦氢化反应机理:Pd2(dba)3(R, R)-QuinoxP*配位生成零价钯配合物,可能经过以下两种途径。Path A:零价钯配合物与二苯基次膦酸进行氧化加成得到钯氢物种;之后与炔烃发生氢钯化得到乙烯基钯中间体;与次膦酸酯进行配体交换后,再还原消除得到最终产物。Path B:零价钯配合物与次膦酸酯直接进行氧化加成得到钯氢物种;接着与炔烃发生氢钯化得到乙烯基钯中间体;最后还原消除得到产物。两条反应途径在反应过程中同时存在。

Pd(PPh3)4和手性双膦配体(R)-Difluorphos催化下,以二芳基膦氧作为膦氢化试剂,实现了氧代联烯的不对称膦氢化反应,以50-99%产率和79-99%对映选择性合成手性烯丙基膦氧。根据单晶衍射确定产物的绝对构型为R。手性烯丙基膦氧经过衍生化合成膦氧取代的手性色烯,同时也实现了甾体胆固醇联烯衍生物的后期官能化。通过氘代实验,根据产物的氘代位点,提出可能的膦氢化反应机理:Pd(PPh3)4(R)-Difluorphos生成零价钯配合物;零价钯中间体与联烯进行配位后,形成的中间体具有碱性,能够夺取三价膦酸的氢(二芳基膦氧互变异构),生成烯丙基钯中间体;由于氧的给电子性可以稳定烯丙基正离子,二芳基膦氧将在氧的α位进行亲核取代得到最终的产物。

Cu(OAc)2和手性双膦配体(R)-DTBM-segphos催化下,实现了肉桂基膦酸衍生物的不对称氢胺化反应,以52-90%产率和69-99%对映选择性高效的合成手性γ-氨基酯膦酸衍生物。同时,也能以37-40%产率和98-99%对映选择性不对称合成δ-氨基酯和δ-氨基酯膦酸衍生物。通过手性γ-氨基醇衍生化确定胺化产物的构型为S。通过使用氘代甲醇捕获烯烃铜氢化后的烷基铜中间体得到双键还原的产物,提出可能的反应机理:Cu(OAc)2(R)-DTBM-segphos络合,在硅烷的还原下生成L*CuH物种;L*CuH先对双键进行插入,形成烷基铜中间体;接着对羟胺酯的N-O键进行氧化加成,再还原消除形成碳氮键;剩下的铜物种被硅氢作用还原,再生成L*CuH物种,进行之后的催化循环。

其他摘要

Chiral phosphorus compounds have important application value and potential in pharmaceutical chemistry, organic synthetic chemistry and life sciences. Therefore, developing synthetic methodology of chiral phosphorus compounds is always a hotspot in organic synthesis. Asymmetric hydrofunctionalization, an important part of modern organic synthesis, is one of the most efficient protocols to prepare optically active compounds with the development of asymmetric catalysis. This dissertation focused on palladium-catalyzed asymmetric hydrophosphorylation of alkynes access to P-stereogenic phosphinates and hydrophosphinylation of allenes access to chiral allylic phosphine oxides, as well as enantioselective and regioselective hydroamination of cinnamyl phosphonic acid derivatives by copper-catalysis access to chiral γ-amino phosphonic acid derivatives.

Palladium-catalyzed asymmetric hydrophosphorylation of alkynes with arylphosphinates has been developed. A variety of chiral P-stereogenic phosphinates were obtained in 28-94% yields with 33-86% enantioselectivities by Pd2(dba)3 /(R, R)-QuinoxP* catalytic system. The absolute configuration of hydrophosphorylation product was unambiguously confirmed as R by X-ray crystallographic analysis. Based on the deuterium-labeling experiment, it proved that the oxidative addition, hydropalladation and ligand exchange were reversible. A possible mechanism was proposed in accordance with the deuterium-labeling experiment. Formation of chiral palladium complex is from Pd2(dba)3 and (R, R)-QuinoxP*. Path A: Subsequent oxidative addition of chiral palladium complex to Ph2P(O)OH produces Pd-H species. The hydropalladation of alkynes takes place to give an α-alkenylpalladium intermediate by Markovnikov addition. Subsequent ligand exchange with phosphinate and reductive elimination give the desired product. Path B: The intermediate Pd-H is generated directly by the oxidative addition of the P–H bond of phosphinates to palladium. Then hydropalladation of alkynes and reductive elimination give the desired alkenylphosphinate product. Both pathways exit at the same time in the reaction system.

Pd(PPh3)4/(R)-Difluorphos-catalyzed enantioselective hydrophosphinylation of allenes with diarylphosphine oxides is presented access to chiral allylic phosphine oxides in 50-99% yields with 79-99% enantioselectivities. The absolute configuration of the allylic phosphine oxides was determined to be R by single crystal X-ray analysis. This methodology was further applied in the first synthesis of chiral 2H-chromene by two-steps method and later stage functionalization of cholesterol derivative. A possible mechanism of hydrophosphinylation was proposed in the light of deuterium incorporation. Pd(PPh3)4 and (R)-Difluorphos generate chiral palladium complex. Subsequent coordination with allene gives a basic intermediate that can snatch up proton from phosphinous acid (diphenylphosphine oxide’s tautomeric form) to form allylpalladium intermediate. It then undergoes allylic substitution at the α-position, for positive charge stabilized by an alkoxy group, to give chiral allylic phosphine oxides and regenerate the chiral Pd complex.

Cu(OAc)2/(R)-DTBM-segphos-catalyzed enantioselective and regioselective hydroamination of cinnamyl phosphonic acid derivatives is proposed to achieve chiral γ-amino phosphonic acid derivatives in 52-90% yields with 69-99% enantioselectivities, as well as chiral δ-amino esters and δ-amino phosphonic acid derivatives in 37-40% yields with 98-99% enantioselectivities. The absolute configuration of amination product was determined to be S by the comparison with chiral product obtained by a two steps synthesis from (S)-3-amino-3-phenylpropan-1-ol. A protonation reaction by using CD3OD instead of hydroxylamine ester was conducted to probe the regioselectivity of the generated organocopper species to confirm the reaction mechanism. L*CuH is generated by reduction of Cu(OAc)2 and (R)-DTBM-segphos by methyldimethoxysilane (DMMS). L*CuH’s stereoselective migratory insertion into an alkene of cinnamyl phosphonic acid derivatives would generate an alkyl copper complex. Subsequent intramolecular SN2 cleavage of N-O linkage of the hydroxylamine ester followed by reductive elimination would give the hydroamination product. The left Cu(I) species would be reduced with DMMS to reform the L*CuH species .

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Lamberth, C. Amino Acid Chemistry in Crop Protection [J]. Tetrahedron, 2010, 66(36): 7239-7256.
[2] Lambrinoudaki, I., Christodoulakos, G., Botsis, D. Bisphosphonates [J]. Annals of the New York Academy of Sciences, 2006, 1092(1): 397-402.
[3] Clercq, E.D. Clinical Potential of the Acyclic Nucleoside Phosphonates Cidofovir, Adefovir, and Tenofovir in Treatment of DNA Virus and Retrovirus Infections [J]. Clinical Microbiology Reviews, 2003, 16(4): 569-596.
[4] Peterson, L.W., Sala-Rabanal, M., Krylov, I.S. et al. Serine Side Chain-Linked Peptidomimetic Conjugates of Cyclic HPMPC and HPMPA: Synthesis and Interaction with hPEPT1 [J]. Molecular Pharmaceutics, 2010, 7(6): 2349-2361.
[5] Guo, H., Fan, Y.C., Sun, Z. et al. Phosphine Organocatalysis [J]. Chemical Reviews, 2018, 118(20): 10049-10293.
[6] Ni, H., Chan, W.-L., Lu, Y. Phosphine-catalyzed Asymmetric Organic Reactions [J]. Chemical Reviews, 2018, 118(18): 9344-9411.
[7] Gong, S., Chang, Y.-L., Wu, K. et al. High-power-efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-transporting Materials [J]. Chemistry of Materials, 2014, 26(3): 1463-1470.
[8] Zhang, S., Yuan, D., Zhang, Q. et al. Highly Efficient Removal of Uranium from Highly Acidic Media Achieved Using a Phosphine Oxide and Amino Functionalized Superparamagnetic Composite Polymer Adsorbent [J]. Journal of Materials Chemistry A, 2020, 8(21): 10925-10934.
[9] Mallesham, G., Swetha, C., Niveditha, S. et al. Phosphine Oxide Functionalized Pyrenes as Efficient Blue Light Emitting Multifunctional Materials for Organic Light Emitting Diodes [J]. Journal of Materials Chemistry C, 2015, 3(6): 1208-1224.
[10] Kim, H., Lee, J., Jung, H. Study on the Carbamoyl Phosphine Oxide Moiety Functionalized Mesoporous Graphene for the Removal of Rare Earth Elements [J]. Journal of Porous Materials, 2019, 26(4): 931-939.
[11] Jin, S., Gonsalves, K.E. Synthesis and Characterization of Functionalized Poly(ε-caprolactone) Copolymers by Free-radical Polymerization [J]. Macromolecules, 1998, 31(4): 1010-1015.
[12] Zhang, Y., Yu, B., Wang, B. et al. Highly Effective P–P Synergy of a Novel DOPO-based Flame Retardant for Epoxy Resin [J]. Industrial and Engineering Chemistry Research, 2017, 56(5): 1245-1255.
[13] You, G., Cheng, Z., Tang, Y. et al. Functional Group Effect on Char Formation, Flame Retardancy and Mechanical Properties of Phosphonate-triazine-based Compound as Flame Retardant in Epoxy Resin [J]. Industrial and Engineering Chemistry Research, 2015, 54(30): 7309-7319.
[14] Suresh, A., Srinivasan, T.G., Rao, P.R.V. Extraction of U(VI), Pu(IV) and Th(IV) by Some Trialkyl Phosphates [J]. Solvent Extraction and Ion Exchange, 1994, 12(4): 727-744.
[15] Reddy, B.R., Neela Priya, D., Venkateswara Rao, S. et al. Solvent Extraction and Separation of Cd(II), Ni(II) and Co(II) from Chloride Leach Liquors of Spent Ni–Cd Batteries Using Commercial Organo-phosphorus Extractants [J]. Hydrometallurgy, 2005, 77(3): 253-261.
[16] Rémond, E., Bayardon, J., Ondel-Eymin, M.-J. et al. Stereoselective Synthesis of Unsaturated and Functionalized l-NHBoc Amino Acids, Using Wittig Reaction under Mild Phase-Transfer Conditions [J]. Journal of Organic Chemistry, 2012, 77(17): 7579-7587.
[17] Seto, H., Kuzuyama, T. Bioactive Natural Products with Carbon–phosphorus Bonds and Their Biosynthesis [J]. Natural Products Reports, 1999, 16(5): 589-596.
[18] Horsman, G.P., Zechel, D.L. Phosphonate Biochemistry [J]. Chemical Reviews, 2017, 117(8): 5704-5783.
[19] Shie, J.-J., Fang, J.-M., Wang, S.-Y. et al. Synthesis of Tamiflu and its Phosphonate Congeners Possessing Potent Anti-influenza Activity [J]. Journal of the American Chemical Society, 2007, 129(39): 11892-11893.
[20] Shie, J.-J., Fang, J.-M., Wong, C.-H. A Concise and Flexible Synthesis of the Potent Anti-influenza Agents Tamiflu and Tamiphosphor [J]. Angewandte Chemie International Edition, 2008, 47(31): 5788-5791.
[21] Cheng, T.-J.R., Weinheimer, S., Tarbet, E.B. et al. Development of Oseltamivir Phosphonate Congeners as Anti-influenza Agents [J]. Journal of Medicinal Chemistry, 2012, 55(20): 8657-8670.
[22] Dutartre, M., Bayardon, J., Juge, S. Applications and Stereoselective Syntheses of P-Chirogenic Phosphorus Compounds [J]. Chemical Society Reviews, 2016, 45(20): 5771-5794.
[23] Holshue, M.L., Debolt, C., Lindquist, S. et al. First Case of 2019 Novel Coronavirus in the United States [J]. New England Journal of Medicine, 2020, 382(10): 929-936.
[24] Vineyard, B.D., Knowles, W.S., Sabacky, M.J. et al. Asymmetric Hydrogenation. Rhodium Chiral Bisphosphine Catalyst [J]. Journal of the American Chemical Society, 1977, 99(18): 5946-5952.
[25] Xu, G., Senanayake, C.H., Tang, W. P-Chiral Phosphorus Ligands Based on a 2,3-Dihydrobenzo[d]
[1,3]oxaphosphole Motif for Asymmetric Catalysis [J]. Accounts of Chemical Research, 2019, 52(4): 1101-1112.
[26] Li, W., Zhang, J. Recent Developments in the Synthesis and Utilization of Chiral β-Aminophosphine Derivatives as Catalysts or Ligands [J]. Chemical Society Reviews, 2016, 45(6): 1657-1677.
[27] Saitoh, A., Morimoto, T., Achiwa, K. A Phosphorus-containing Chiral Amidine Ligand for Asymmetric Reactions: Enantioselective Pd-catalyzed Allylic Alkylation [J]. Tetrahedron: Asymmetry, 1997, 8(21): 3567-3570.
[28] Dai, Q., Liu, L., Qian, Y. et al. Construction of P-Chiral Alkenylphosphine Oxides through Highly Chemo-, Regio-, and Enantioselective Hydrophosphinylation of Alkynes [J]. Angewandte Chemie International Edition, 2020, 59(46): 20645-20650.
[29] Dai, Q., Li, W., Li, Z. et al. P-Chiral Phosphines Enabled by Palladium/XiaoPhos-catalyzed Asymmetric P-C Cross-coupling of Secondary Phosphine Oxides and Aryl Bromides [J]. Journal of the American Chemical Society, 2019, 141(51): 20556-20564.
[30] 苏亚军, 史福强. 手性磷酸在不对称反应中的应用 [J]. Acta Chimica Sinica, 2010, 30(4): 486-498.
[31] An, Q.-J., Xia, W., Ding, W.-Y. et al. Nitrosobenzene-enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric N-Arylbenzimidazoles [J]. Angewandte Chemie International Edition, 2021, 60(47): 24888-24893.
[32] Wu, S., Xiang, S.-H., Li, S. et al. Urea Group-directed Organocatalytic Asymmetric Versatile Dihalogenation of Alkenes and Alkynes [J]. Nature Catalysis, 2021, 4(8): 692-702.
[33] Cheng, Y.-F., Liu, J.-R., Gu, Q.-S. et al. Catalytic Enantioselective Desymmetrizing Functionalization of Alkyl Radicals via Cu(I)/CPA Cooperative Catalysis [J]. Nature Catalysis, 2020, 3(4): 401-410.
[34] Li, Z.-L., Fang, G.-C., Gu, Q.-S. et al. Recent Advances in Copper-catalysed Radical-involved Asymmetric 1,2-Difunctionalization of Alkenes [J]. Chemical Society Reviews, 2020, 49(1): 32-48.
[35] 朱仁义, 廖奎, 余金生 等. P-手性膦氧化物的不对称催化合成研究进展 [J]. Acta Chimica Sinica, 2020, 78(3): 193-216.
[36] Lemouzy, S., Giordano, L., Herault, D. et al. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules [J]. European Journal of Organic Chemistry, 2020, 2020(23): 3351-3366.
[37] Pakulski, Z., Pietrusiewicz, K.M. Enantioselective Desymmetrization of Phospholene Meso-epoxide by Nucleophilic Opening of the Epoxide [J]. Tetrahedron: Asymmetry, 2004, 15(1): 41-45.
[38] Nishida, G., Noguchi, K., Hirano, M. et al. Enantioselective Synthesis of P-Stereogenic Alkynylphosphine Oxides by Rh-catalyzed
[2+2+2] Cycloaddition [J]. Angewandte Chemie International Edition, 2008, 47(18): 3410-3413.
[39] Tahara, Y.-K., Sato, T., Matsubara, R. et al. Multi-substituted Dibenzophosphole Oxide Synthesis by the Catalytic
[2 + 2 + 2] Cycloaddition of Phosphorylbenzene-tethered Diynes with Various Alkynes [J]. Heterocycles, 2016, 93(2): 685-704.
[40] Beaud, R., Phipps, R.J., Gaunt, M.J. Enantioselective Cu-catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines [J]. Journal of the American Chemical Society, 2016, 138(40): 13183-13186.
[41] Zhang, Y., He, H., Wang, Q. et al. Asymmetric Synthesis of Chiral P-Stereogenic Triaryl Phosphine Oxides via Pd-catalyzed Kinetic Arylation of Diaryl Phosphine Oxides [J]. Tetrahedron Letters, 2016, 57(48): 5308-5311.
[42] De Azambuja, F., Carmona, R.C., Chorro, T.H.D. et al. Noncovalent Substrate-directed Enantioselective Heck Reactions: Synthesis of S- and P-Stereogenic Heterocycles [J]. Chemistry - A European Journal, 2016, 22(32): 11205-11209.
[43] Lim, K.M.-H., Hayashi, T. Dynamic Kinetic Resolution in Rhodium-catalyzed Asymmetric Arylation of Phospholene Oxides [J]. Journal of the American Chemical Society, 2017, 139(24): 8122-8125.
[44] Lin, Y., Ma, W.-Y., Sun, Q.-Y. et al. Catalytic Synthesis of Chiral Phosphole Oxides via Desymmetric C–H Arylation of o-Bromoaryl Phosphine Oxides [J]. Synlett, 2017, 28(12): 1432-1436.
[45] Li, Z., Lin, Z.-Q., Yan, C.-G. et al. Pd-catalyzed Asymmetric C–H Bond Activation for the Synthesis of P-Stereogenic Dibenzophospholes [J]. Organometallics, 2019, 38(20): 3916-3920.
[46] Jang, Y.-S., Dieckmann, M., Cramer, N. Cooperative Effects between Chiral Cpx -Iridium(III) Catalysts and Chiral Carboxylic Acids in Enantioselective C-H Amidations of Phosphine Oxides [J]. Angewandte Chemie International Edition, 2017, 56(47): 15088-15092.
[47] Wang, Z., Hayashi, T. Rhodium-catalyzed Enantioposition-selective Hydroarylation of Divinylphosphine Oxides with Aryl Boroxines [J]. Angewandte Chemie International Edition, 2018, 57(6): 1702-1706.
[48] Zheng, Y., Guo, L., Zi, W. Enantioselective and Regioselective Hydroetherification of Alkynes by Gold-catalyzed Desymmetrization of Prochiral Phenols with P-Stereogenic Centers [J]. Organic Letters, 2018, 20(22): 7039-7043.
[49] Jang, Y.-S., Wozniak, L., Pedroni, J. et al. Access to P- and Axially Chiral Biaryl Phosphine Oxides by Enantioselective CpxIr(III)-catalyzed C-H Arylations [J]. Angewandte Chemie International Edition, 2018, 57(39): 12901-12905.
[50] Liu, X.-T., Zhang, Y.-Q., Han, X.-Y. et al. Ni-catalyzed Asymmetric Allylation of Secondary Phosphine Oxides [J]. Journal of the American Chemical Society, 2019, 141(42): 16584-16589.
[51] Zhang, Y., Zhang, F., Chen, L. et al. Asymmetric Synthesis of P-Stereogenic Compounds via Thulium(III)-catalyzed Desymmetrization of Dialkynylphosphine Oxides [J]. ACS Catalysis, 2019, 9(6): 4834-4840.
[52] Fernández-Pérez, H., Vidal-Ferran, A. Stereoselective Catalytic Synthesis of P-Stereogenic Oxides via Hydrogenative Kinetic Resolution [J]. Organic. Letters, 2019, 21(17): 7019-7023.
[53] Li, Y.B., Tian, H., Yin, L. Copper(I)-catalyzed Asymmetric 1,4-Conjugate Hydrophosphination of alpha,beta-Unsaturated Amides [J]. Journal of the American Chemical Society, 2020, 142(47): 20098-20106.
[54] Yue, W.-J., Xiao, J.-Z., Zhang, S. et al. Rapid Synthesis of Chiral 1,2-Bisphosphine Derivatives through Copper(I)-catalyzed Asymmetric Conjugate Hydrophosphination [J]. Angewandte Chemie International Edition, 2020, 59(18): 7057-7062.
[55] Zhu, R.-Y., Chen, L., Hu, X.-S. et al. Enantioselective Synthesis of P-Chiral Tertiary Phosphine Oxides with an Ethynyl Group via Cu(I)-catalyzed Azide-alkyne Cycloaddition [J]. Chemical Science, 2020, 11(1): 97-106.
[56] Zhang, S., Xiao, J.-Z., Li, Y.-B. et al. Copper(I)-catalyzed Asymmetric Alkylation of Unsymmetrical Secondary Phosphines [J]. Journal of the American Chemical Society, 2021, 143(26): 9912−9921.
[57] Liu, X.-T., Han, X.-Y., Wu, Y. et al. Ni-catalyzed Asymmetric Hydrophosphination of Unactivated Alkynes [J]. Journal of the American Chemical Society, 2021, 143(30): 11309−11316.
[58] Zhang, C.-W., Hu, X.-Q., Dai, Y.-H. et al. Asymmetric C–H Activation for the Synthesis of P- and Axially Chiral Biaryl Phosphine Oxides by an Achiral Cp*Ir Catalyst with Chiral Carboxylic Amide [J]. ACS Catalysis, 2021, 193-199.
[59] Dai, Q., Liu, L., Zhang, J. Palladium/XiaoPhos-catalyzed Kinetic Resolution of sec-Phosphine Oxides by P-Benzylation [J]. Angewandte Chemie International Edition, 2021, 60(52): 27247-27252.
[60] Wu, Z.H., Cheng, A.Q., Yuan, M. et al. Cobalt-catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of P-Stereogenic Compounds [J]. Angewandte Chemie International Edition, 2021, 60(52): 27241-27246.
[61] Du, Z.-J., Guan, J., Wu, G.-J. et al. Pd(II)-catalyzed Enantioselective Synthesis of P-Stereogenic Phosphinamides via Desymmetric C-H Arylation [J]. Journal of the American Chemical Society, 2015, 137(2): 632-635.
[62] Chen, Y.-H., Qin, X.-L., Guan, J. et al. Pd-catalyzed Enantioselective C-H Arylation of Phosphinamides with Boronic Acids for the Synthesis of P-Stereogenic Compounds [J]. Tetrahedron: Asymmetry, 2017, 28(4): 522-531.
[63] Wu, G.-J., Tan, D.-X., Han, F.-S. The Phosphinamide-based Catalysts: Discovery, Methodology Development, and Applications in Natural Product Synthesis [J]. Accounts of Chemical Research, 2021, 54(23): 4354-4370.
[64] Lin, Z.-Q., Wang, W.-Z., Yan, S.-B. et al. Palladium-catalyzed Enantioselective C-H Arylation for the Synthesis of P-Stereogenic Compounds [J]. Angewandte Chemie International Edition, 2015, 54(21): 6265-6269.
[65] Liu, L., Zhang, A.-A., Wang, Y. et al. Asymmetric Synthesis of P-Stereogenic Phosphinic Amides via Pd(0)-catalyzed Enantioselective Intramolecular C-H Arylation [J]. Organic Letters, 2015, 17(9): 2046-2049.
[66] Sun, Y., Cramer, N. Rhodium(III)-catalyzed Enantiotopic C-H Activation Enables Access to P-Chiral Cyclic Phosphinamides [J]. Angewandte Chemie International Edition, 2017, 56(1): 364-367.
[67] Sun, Y., Cramer, N. Tailored Trisubstituted Chiral CpxRh(III) Catalysts for Kinetic Resolutions of Phosphinic Amides [J]. Chemical Science, 2018, 9(11): 2981-2985.
[68] Genov, G.R., Douthwaite, J.L., Lahdenpera, A.S.K. et al. Enantioselective Remote C-H Activation Directed by a Chiral Cation [J]. Science, 2020, 367(6483): 1246-1251.
[69] Zhang, X.-L., Qi, X., Wu, Y.-X. et al. P-Stereogenic N-Vinylphosphonamides Enabled by Asymmetric Allylic Substitution-isomerization [J]. Cell Reports Physical Science, 2021, 2(10): 100594-100610.
[70] Harvey, J.S., Malcolmson, S.J., Dunne, K.S. et al. Enantioselective Synthesis of P-Stereogenic Phosphinates and Phosphine Oxides by Molybdenum-catalyzed Asymmetric Ring-closing Metathesis [J]. Angewandte Chemie International Edition, 2009, 48(4): 762-766.
[71] Huang, Y., Li, Y., Leung, P.-H. et al. Asymmetric Synthesis of P-Stereogenic Diarylphosphinites by Palladium-catalyzed Enantioselective Addition of Diarylphosphines to Benzoquinones [J]. Journal of the American Chemical Society, 2014, 136(13): 4865-4868.
[72] Xu, G., Li, M., Wang, S. et al. Efficient Synthesis of P-Chiral Biaryl Phosphonates by Stereoselective Intramolecular Cyclization [J]. Organic. Chemistry. Frontiers, 2015, 2(10): 1342-1345.
[73] Trost, B.M., Spohr, S.M., Rolka, A.B. et al. Desymmetrization of Phosphinic Acids via Pd-Catalyzed Asymmetric Allylic Alkylation: Rapid Access to P-Chiral Phosphinates [J]. Journal of the American Chemical Society, 2019, 141(36): 14098-14103.
[74] Song, S.-Y., Li, Y., Ke, Z. et al. Iridium-catalyzed Enantioselective C–H Borylation of Diarylphosphinates [J]. ACS Catalysis, 2021, 11(21): 13445-13451.
[75] Zhang, Q., Liu, X.T., Wu, Y. et al. Ni-catalyzed Enantioselective Allylic Alkylation of H-Phosphinates [J]. Organic Letters, 2021, 23(22): 8683-8687.
[76] Fu, X., Loh, W.-T., Zhang, Y. et al. Chiral Guanidinium Salt Catalyzed Enantioselective Phospha-Mannich Reactions [J]. Angewandte Chemie International Edition, 2009, 48(40): 7387-7390.
[77] Toda, Y., Pink, M., Johnston, J.N. Brønsted Acid Catalyzed Phosphoramidic Acid Additions to Alkenes: Diastereo- and Enantioselective Halogenative Cyclizations for the Synthesis of C- and P-Chiral Phosphoramidates [J]. Journal of the American Chemical Society, 2014, 136(42): 14734-14737.
[78] Huang, Z., Huang, X., Li, B. et al. Access to P-Stereogenic Phosphinates via N-Heterocyclic Carbene-catalyzed Desymmetrization of Bisphenols [J]. Journal of the American Chemical Society, 2016, 138(24): 7524-7527.
[79] Yang, G.-H., Li, Y., Li, X. et al. Access to P-Chiral Phosphine Oxides by Enantioselective Allylic Alkylation of Bisphenols [J]. Chemical Science, 2019, 10(15): 4322-4327.
[80] Qiu, H., Dai, Q., He, J. et al. Access to P-Chiral sec- and tert-Phosphine Oxides Enabled by Le-Phos-catalyzed Asymmetric Kinetic Resolution [J]. Chemical Science, 2020, 11(36): 9983-9988.
[81] Huang, Q.-H., Zhou, Q.-Y., Yang, C. et al. Access to P-Stereogenic Compounds via Desymmetrizing Enantioselective Bromination [J]. Chemical Science, 2021, 12(12): 4582–4587.
[82] Pican, S., Gaumont, A.-C. Palladium Catalysed Enantioselective Phosphination Reactions Using Secondary Phosphine-boranes and Aryl Iodide [J]. Chemical Communications, 2005, 2005(18): 2393-2395.
[83] Chan, V.S., Stewart, I.C., Bergman, R.G. et al. Asymmetric Catalytic Synthesis of P-Stereogenic Phosphines via a Nucleophilic Ruthenium Phosphido Complex [J]. Journal of the American Chemical Society, 2006, 128(9): 2786-2787.
[84] Join, B., Mimeau, D., Delacroix, O. et al. Pallado-catalysed Hydrophosphination of Alkynes: Access to Enantio-enriched P-Stereogenic Vinyl Phosphine–boranes [J]. Chemical Communications, 2006, 2006(30): 3249-3251.
[85] Scriban, C., Glueck, D.S. Platinum-catalyzed Asymmetric Alkylation of Secondary Phosphines:  Enantioselective Synthesis of P-Stereogenic Phosphines [J]. Journal of the American Chemical Society, 2006, 128(9): 2788-2789.
[86] Blank, N.F., Moncarz, J.R., Brunker, T.J. et al. Palladium-catalyzed Asymmetric Phosphination. Scope, Mechanism, and Origin of Enantioselectivity [J]. Journal of the American Chemical Society, 2007, 129(21): 6847-6858.
[87] Chan, V.S., Bergman, R.G., Toste, F.D. Pd-catalyzed Dynamic Kinetic Enantioselective Arylation of Silylphosphines [J]. Journal of the American Chemical Society, 2007, 129(49): 15122-15123.
[88] Li, C., Bian, Q.-L., Xu, S. et al. Palladium-catalyzed 1,4-Addition of Secondary Alkylphenylphosphines to α,β-Unsaturated Carbonyl Compounds for the Synthesis of Phosphorus- and Carbon-Stereogenic Compounds [J]. Organic Chemistry Frontiers, 2014, 1(5): 541-545.
[89] Wang, C., Huang, K., Ye, J. et al. Asymmetric Synthesis of P-Stereogenic Secondary Phosphine-boranes by an Unsymmetric Bisphosphine Pincer-Nickel Complex [J]. Journal of the American Chemical Society, 2021, 143(15): 5685-5690.
[90] Nishimura, T., Hirabayashi, S., Yasuhara, Y. et al. Rhodium-catalyzed Asymmetric Hydroarylation of Diphenylphosphinylallenes with Arylboronic Acids [J]. Journal of the American Chemical Society, 2006, 128(8): 2556-2557.
[91] Nishimura, T., Guo, X.-X., Hayashi, T. Rhodium-catalyzed Asymmetric Addition of Terminal Alkynes to Diarylphosphinylallenes [J]. Chemistry-an Asian Journal, 2008, 3(8-9): 1505-1510.
[92] Kawamoto, T., Hirabayashi, S., Guo, X.-X. et al. Rhodium-catalyzed Asymmetric Hydroalkoxylation and Hydrosulfenylation of Diphenylphosphinylallenes [J]. Chemical Communications, 2009, 2009(24): 3528-3530.
[93] Butti, P., Rochat, R., Sadow, A.D. et al. Palladium-catalyzed Enantioselective Allylic Phosphination [J]. Angewandte Chemie International Edition, 2008, 47(26): 4878-4881.
[94] Zhang, L., Liu, W., Zhao, X. Carbon-phosphorus Bond Formation by Enantioselective Palladium-catalyzed Allylation of Diphenylphosphine Oxide [J]. European Journal of Organic Chemistry, 2014, 2014(31): 6846-6849.
[95] Sun, W., Hong, L., Liu, C. et al. Base-accelerated Enantioselective Substitution of Morita-Baylis-Hillman Carbonates with Dialkyl Phosphine Oxides [J]. Organic Letters, 2010, 12(17): 3914-3917.
[96] Hong, L., Sun, W., Liu, C. et al. Enantioselective Construction of Allylic Phosphine Oxides through Substitution of Morita-Baylis-Hillman Carbonates with Phosphine oxides [J]. Chemical Communications, 2010, 46(16): 2856-2858.
[97] Yang, X.-Y., Tay, W.S., Li, Y. et al. Asymmetric 1,4-Conjugate Addition of Diarylphosphines to α,β,γ,δ-Unsaturated Ketones Catalyzed by Transition-metal Pincer Complexes [J]. Organometallics, 2015, 34(20): 5196-5201.
[98] Nie, S.-Z., Davison, R.T., Dong, V.M. Enantioselective Coupling of Dienes and Phosphine Oxides [J]. Journal of the American Chemical Society, 2018, 140(48): 16450-16454.
[99] Long, J., Li, Y., Zhao, W. et al. Nickel/Brønsted Acid Dual-catalyzed Regio- and Enantioselective Hydrophosphinylation of 1,3-Dienes: Access to Chiral Allylic Phosphine Oxides [J]. Chemical Science, 2022, 13(5): 1390-1397.
[100] Gu, Z., Zhou, J., Jiang, G.-F. et al. Synthesis of Chiral γ-Aminophosphonates through the Organocatalytic Hydrophosphonylation of Azadienes with Phosphites [J]. Organic Chemistry Frontiers, 2018, 5(7): 1148-1151.
[101] Chen, C., Peters, J.C., Fu, G.C. Photoinduced Copper-catalysed Asymmetric Amidation via Ligand Cooperativity [J]. Nature, 2021, 596(7871): 250-256.
[102] Bhattacharya, A.K., Thyagarajan, G. Michaelis-Arbuzov Rearrangement [J]. Chemical Reviews, 1981, 81(4): 415-430.
[103] Isley, N.A., Linstadt, R.T.H., Slack, E.D. et al. Copper-catalyzed Hydrophosphinations of Styrenes in Water at Room Temperature [J]. Dalton Transactions, 2014, 43(35): 13196-13200.
[104] Hirai, T., Han, L.-B. Air-induced anti-Markovnikov Addition of Secondary Phosphine Oxides and H-Phosphinates to Alkenes [J]. Organic Letters, 2007, 9(1): 53-55.
[105] Janesko, B.G., Fisher, H.C., Bridle, M.J. et al. P(=O)H to P-OH Tautomerism: A Theoretical and Experimental Study [J]. Journal of Organic Chemistry, 2015, 80(20): 10025-10032.
[106] Wang, X.-B., Goto, M., Han, L.-B. Efficient Asymmetric Hydrogenation of α-Acetamidocinnamates through a Simple, Readily Available Monodentate Chiral H-Phosphinate [J]. Chemistry - A European Journal, 2014, 20(13): 3631-3635.
[107] Shaikh, T.M., Weng, C.-M., Hong, F.-E. Secondary Phosphine Oxides: Versatile ligands in Transition Metal-catalyzed Cross-coupling Reactions [J]. Coordination Chemistry Reviews, 2012, 256(9-10): 771-803.
[108] Han, L.-B., Tanaka, M. Palladium-catalyzed Hydrophosphorylation of Alkynes via Oxidative Addition of HP(O)(OR)2 [J]. Journal of the American Chemical Society, 1996, 118(6): 1571-1572.
[109] Greenberg, S., Stephan, D.W. Stoichiometric and Catalytic Activation of P-H and P-P bonds [J]. Chemical Society Reviews, 2008, 37(12): 2798.
[110] Coudray, L., Montchamp, J.-L. Recent Developments in the Addition of Phosphinylidene-containing Compounds to Unactivated Unsaturated Hydrocarbons: Phosphorus-carbon Bond Formation by Hydrophosphinylation and Related Processes [J]. European Journal of Organic Chemistry, 2008, 2008(21): 3601-3613.
[111] Chen, T., Zhao, C.-Q., Han, L.-B. Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism [J]. Journal of the American Chemical Society, 2018, 140(8): 3139-3155.
[112] Han, L.-B., Zhao, C.-Q., Onozawa, S.-Y. et al. Retention of Configuration on the Oxidative Addition of P-H Bond to Platinum(0) Complexes: The First Straightforward Synthesis of Enantiomerically Pure P-Chiral Alkenylphosphinates via Palladium-Catalyzed Stereospecific Hydrophosphinylation of Alkynes [J]. Journal of the American Chemical Society, 2002, 124(15): 3842-3843.
[113] Bravo-Altamirano, K., Huang, Z., Montchamp, J.-L. Palladium-catalyzed Phosphorus–carbon Bond Formation: Cross-coupling Reactions of Alkyl Phosphinates with Aryl, Heteroaryl, Alkenyl, Benzylic, and Allylic Halides and Triflates [J]. Tetrahedron, 2005, 61(26): 6315-6329.
[114] Li, J.-N., Liu, L., Fu, Y. et al. What Are the pKa Values of Organophosphorus Compounds? [J]. Tetrahedron, 2006, 62(18): 4453-4462.
[115] Li, C., Wang, Q., Zhang, J.-Q. et al. Water Determines the Products: an Unexpected Brønsted Acid-catalyzed PO-R Cleavage of P(III) Esters Selectively Producing P(O)-H and P(O)-R Compounds [J]. Greem Chemistry, 2019, 21(11): 2916-2922.
[116] 张毛毛, 骆元元, 陆良秋 等. 过渡金属与有机小分子协同催化的不对称烯丙基取代反应研究进展 [J]. Acta Chimica Sinica, 2018, 76(11): 838-849.
[117] 杨普苏, 刘晨旭, 张文文 等. 铱催化中氮茚衍生物的Friedel-Crafts类型不对称烯丙基取代反应 [J]. Acta Chimica Sinica, 2021, 79(6): 742-746.
[118] Blieck, R., Taillefer, M., Monnier, F. Metal-catalyzed Intermolecular Hydrofunctionalization of Allenes: Easy Access to Allylic Structures via the Selective Formation of C–N, C–C, and C–O Bonds [J]. Chemical Reviews, 2020, 120(24): 13545-13598.
[119] Li, G., Huo, X., Jiang, X. et al. Asymmetric Synthesis of Allylic Compounds via Hydrofunctionalisation and Difunctionalisation of Dienes, Allenes, and Alkynes [J]. Chemical Society Reviews, 2020, 49(7): 2060-2118.
[120] Trost, B.M., Jaekel, C., Plietker, B. Palladium-catalyzed Asymmetric Addition of Pronucleophiles to Allenes [J]. Journal of the American Chemical Society, 2003, 125(15): 4438-4439.
[121] Zhou, H., Wei, Z., Zhang, J. et al. From Palladium to Brønsted Acid Catalysis: Highly Enantioselective Regiodivergent Addition of Alkoxyallenes to Pyrazolones [J]. Angewandte Chemie International Edition, 2017, 56(4): 1077-1081.
[122] Trost, B.M., Xie, J., Sieber, J.D. The Palladium Catalyzed Asymmetric Addition of Oxindoles and Allenes: an Atom-economical Versatile Method for the Construction of Chiral Indole Alkaloids [J]. Journal of the American Chemical Society, 2011, 133(50): 20611-20622.
[123] Trost, B.M., Xie, J. Palladium-Catalyzed Diastereo- and Enantioselective Wagner-Meerwein Shift: Control of Absolute Stereochemistry in the C-C Bond Migration Event [J]. Journal of the American Chemical Society, 2008, 130(19): 6231-6242.
[124] Trost, B.M., Xie, J. Palladium-catalyzed Asymmetric Ring Expansion of Allenylcyclobutanols: An Asymmetric Wagner-Meerwein Shift [J]. Journal of the American Chemical Society, 2006, 128(18): 6044-6045.
[125] Trost, B.M., Simas, A.B.C., Plietker, B. et al. Enantioselective Palladium-catalyzed Addition of 1,3-Dicarbonyl Compounds to an Allene Derivative [J]. Chemistry - A European Journal, 2005, 11(23): 7075-7082.
[126] Lim, W., Kim, J., Rhee, Y.H. Pd-catalyzed Asymmetric Intermolecular Hydroalkoxylation of Allene: An Entry to Cyclic Acetals with Activating Group-free and Flexible Anomeric Control [J]. Journal of the American Chemical Society, 2014, 136(39): 13618-13621.
[127] Kim, H., Rhee, Y.H. Stereodefined N,O-Acetals: Pd-catalyzed Synthesis from Homopropargylic Amines and Utility in the Flexible Synthesis of 2,6-Substituted Piperidines [J]. Journal of the American Chemical Society, 2012, 134(9): 4011-4014.
[128] Kim, H., Lim, W., Im, D. et al. Synthetic Strategy for Cyclic Amines: Stereodefined Cyclic N,O-Acetals as Stereocontrol and Diversity-generating Element [J]. Angewandte Chemie International Edition, 2012, 51(48): 12055-12058.
[129] Jiang, L., Jia, T., Wang, M. et al. Pd-catalyzed Enantioselective Hydroalkoxylation of Alkoxyallenes with Phenol for Construction of Acyclic O,O-Acetals [J]. Organic Letters, 2015, 17(5): 1070-1073.
[130] Jang, S.H., Kim, H.W., Jeong, W. et al. Palladium-catalyzed Asymmetric Nitrogen-selective Addition Reaction of Indoles to Alkoxyallenes [J]. Organic Letters, 2018, 20(4): 1248-1251.
[131] Jang, D.-J., Lee, S., Lee, J. et al. Palladium-catalyzed Asymmetric Decarboxylative Addition of β-Keto Acids to Heteroatom-substituted Allenes [J]. Angewandte Chemie International Edition, 2021, 60(41): 22166 –22171.
[132] Gao, Z., Yan, C.-X., Qian, J. et al. Enantioselective Synthesis of Axially Chiral Sulfonamides via Atroposelective Hydroamination of Allenes [J]. ACS Catalysis., 2021, 11(12): 6931-6938.
[133] Bernar, I., Fiser, B., Blanco-Ania, D. et al. Pd-catalyzed Hydroamination of Alkoxyallenes with Azole Heterocycles: Examples and Mechanistic Proposal [J]. Organic Letters, 2017, 19(16): 4211-4214.
[134] Koschker, P., Lumbroso, A., Breit, B. Enantioselective Synthesis of Branched Allylic Esters via Rhodium-catalyzed Coupling of Allenes with Carboxylic acids [J]. Journal of the American Chemical Society, 2011, 133(51): 20746-20749.
[135] Cooke, M.L., Xu, K., Breit, B. Enantioselective Rhodium-catalyzed Synthesis of Branched Allylic Amines by Intermolecular Hydroamination of Terminal Allenes [J]. Angewandte Chemie International Edition, 2012, 51(43): 10876-10879.
[136] Pritzius, A.B., Breit, B. Z-Selective Hydrothiolation of Racemic 1,3-Disubstituted Allenes: An Atom-economic Rhodium-catalyzed Dynamic Kinetic Resolution [J]. Angewandte Chemie International Edition, 2015, 54(52): 15818-15822.
[137] Beck, T.M., Breit, B. Regio- and Enantioselective Rhodium-catalyzed Addition of 1,3-Diketones to Allenes: Construction of Asymmetric Tertiary and Quaternary All Carbon Centers [J]. Angewandte Chemie International Edition, 2017, 56(7): 1903-1907.
[138] Yang, K., Bao, X., Liu, S. et al. Asymmetric Addition of Pyrazolones to Allenamides Catalyzed by a Chiral Phosphoric Acid [J]. European Journal of Organic Chemistry, 2018, 2018(46): 6469-6473.
[139] Lin, J.-S., Li, T.-T., Jiao, G.-Y. et al. Chiral Brønsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes [J]. Angewandte Chemie International Edition, 2019, 58(21): 7092-7096.
[140] Zhao, C.-Q., Han, L.-B., Tanaka, M. Palladium-catalyzed Hydrophosphorylation of Allenes Leading to Regio- and Stereoselective Formation of Allylphosphonates [J]. Organometallics, 2000, 19(21): 4196-4198.
[141] Bravo-Altamirano, K., Abrunhosa-Thomas, I., Montchamp, J.-L. Palladium-catalyzed Reactions of Hypophosphorous Compounds with Allenes, Dienes, and Allylic Electrophiles: Methodology for the Synthesis of Allylic H-Phosphinates [J]. Journal of Organic Chemistry, 2008, 73(6): 2292-2301.
[142] Yamamoto, Y., Al-Masum, M. Palladium Catalyzed α-Addition of Certain Pronucleophiles to Alkoxyallenes [J]. Synlett, 1995, 1995(09): 969-970.
[143] Purdy, R.H., Morrow, A.L., Moore, P.H. et al. Stress-induced Elevations of Gamma-aminobutyric Acid Type A Receptor-active Steroids in the Rat Brain [J]. Proceedings of the National Academy of Sciences, 1991, 88(10): 4553-4557.
[144] Silverman, R.B. From Basic Science to Blockbuster Drug: The Discovery of Lyrica [J]. Angewandte Chemie International Edition, 2008, 47(19): 3500-3504.
[145] Hoekstra, M.S., Sobieray, D.M., Schwindt, M.A. et al. Chemical Development of CI-1008, an Enantiomerically Pure Anticonvulsant [J]. Organic Process Research & Development, 1997, 1(1): 26-38.
[146] Bowery, N.G., Hill, D.R., Hudson, A.L. et al. (–)-Baclofen Decreases Neurotransmitter Release in the Mammalian CNS by an Action at a Novel GABA Receptor [J]. Nature, 1980, 283(5742): 92-94.
[147] Hu, B., Deng, L. Catalytic Asymmetric Synthesis of Trifluoromethylated γ-Amino Acids through the Umpolung Addition of Trifluoromethyl Imines to Carboxylic Acid Derivatives [J]. Angewandte Chemie International Edition, 2018, 57(8): 2233-2237.
[148] Guo, L., Chi, Y., Almeida, A.M. et al. Stereospecific Synthesis of Conformationally Constrained γ-Amino Acids: New Foldamer Building Blocks that Support Helical Secondary Structure [J]. Journal of the American Chemical Society, 2009, 131(44): 16018-16020.
[149] Luo, W., Sun, Z., Fernando, E.H.N. et al. Asymmetric Ring-opening of Donor-Acceptor Cyclopropanes with Primary Arylamines Catalyzed by a Chiral Heterobimetallic Catalyst [J]. ACS Catalysis, 2019, 9(9): 8285-8293.
[150] Gomez, J.E., Guo, W., Gaspa, S. et al. Copper-catalyzed Synthesis of γ-Amino Acids Featuring Quaternary Stereocenters [J]. Angewandte Chemie International Edition, 2017, 56(47): 15035-15038.
[151] Zheng, D., Studer, A. Asymmetric Synthesis of Heterocyclic γ-Amino Acid and Diamine Derivatives by Three-component Radical Cascade Reactions [J]. Angewandte Chemie International Edition, 2019, 58(44): 15803-15807.
[152] Chen, X.-Y., Xia, F., Cheng, J.-T. et al. Highly Enantioselective γ-Amination by N-Heterocyclic Carbene Catalyzed
[4+2] Annulation of Oxidized Enals and Azo Dicarboxylates [J]. Angewandte Chemie International Edition, 2013, 52(40): 10644-10647.
[153] Yager, K.M., Taylor, C.M., Smith, A.B., Iii. Asymmetric Synthesis of α-Aminophosphonates via Diastereoselective Addition of Lithium Diethyl Phosphite to Chelating Imines [J]. Journal of the American Chemical Society, 1994, 116(20): 9377-9378.
[154] Orsini, F., Sello, G., Sisti, M. Aminophosphonic Acids and Derivatives. Synthesis and Biological Applications [J]. Current Medicinal Chemistry, 2010, 17(3): 264-289.
[155] Govea, R.M., Zhou, S., Carlton, S.M. Group III Metabotropic Glutamate Receptors and Transient Receptor Potential Vanilloid 1 Co-localize and Interact on Nociceptors [J]. Neuroscience, 2012, 217( ): 130-139.
[156] Yang, Q., Yang, S.-D. Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-amino Acids via Palladium-catalyzed Alkylation of Unactivated C(sp3)–H Bonds [J]. ACS Catalysis, 2017, 7(8): 5220-5224.
[157] Ye, L.-W., Zhou, J., Tang, Y. Phosphine-triggered Synthesis of Functionalized Cyclic Compounds [J]. Chemical Society Reviews, 2008, 37(6): 1140-1152.
[158] Cowen, B.J., Miller, S.J. Enantioselective Catalysis and Complexity Generation from Allenoates [J]. Chemical Society Reviews, 2009, 38(11): 3102-3116.
[159] Cheng, M.-X., Ma, R.-S., Yang, Q. et al. Chiral Brønsted Acid Catalyzed Enantioselective Phosphonylation of Allylamine via Oxidative Dehydrogenation Coupling [J]. Organic Letters, 2016, 18(13): 3262-3265.
[160] Huang, M., Li, C., Huang, J. et al. Palladium-catalyzed Asymmetric Addition of Diarylphosphines to N-Tosylimines [J]. Chemical Communications, 2012, 48(90): 11148-11150.
[161] Chen, D.-H., Sun, W.-T., Zhu, C.-J. et al. Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis [J]. Angewandte Chemie International Edition, 2021, 60(16): 8827-8831.
[162] Feng, J.-J., Huang, M., Lin, Z.-Q. et al. Palladium-catalyzed Asymmetric 1,4-Addition of Diarylphosphines to Nitroalkenes for the Synthesis of Chiral P,N-Compounds [J]. Advanced Synthesis & Catalysis, 2012, 354(16): 3122-3126.
[163] Du, H.-Q., Hu, X.-P. Rh-catalyzed Asymmetric Hydrogenation of (Z)-β-Phosphorylated Enamides: Highly Enantioselective Access to β-Aminophosphines [J]. Organic Letters, 2019, 21(22): 8921-8924.
[164] Chen, H.-X., Kang, J., Chang, R. et al. Synthesis of α,α-Difluorinated Phosphonate pSer/pThr Mimetics via Rhodium-catalyzed Asymmetric Hydrogenation of β-Difluorophosphonomethyl α-(Acylamino)acrylates [J]. Organic Letters, 2018, 20(11): 3278-3281.
[165] Duan, H.-Z., Chen, H.-X., Yu, Q. et al. Stereoselective Synthesis of a Phosphonate pThr Mimetic via Palladium-catalyzed γ-C(sp3)-H Activation for Peptide Preparation [J]. Organic & Biomolecular Chemistry, 2019, 17(8): 2099-2102.
[166] 李翼, 徐明华. 不对称Petasis反应在手性胺类化合物合成中的应用 [J]. Acta Chimica Sinica, 2021, 79(11): 1345-1359.
[167] 胡书博, 陈木旺, 翟小勇 等. 不对称氢化杂环亚胺合成四氢吡咯/吲哚
[1,2-a]并吡嗪 [J]. Acta Chimica Sinica, 2018, 76(2): 103-106.
[168] Zhu, S., Niljianskul, N., Buchwald, S.L. Enantio- and Regioselective CuH-catalyzed Hydroamination of Alkenes [J]. Journal of the American Chemical Society, 2013, 135(42): 15746-15749.
[169] Miki, Y., Hirano, K., Satoh, T. et al. Copper-catalyzed Intermolecular Regioselective Hydroamination of Styrenes with Polymethylhydrosiloxane and Hydroxylamines [J]. Angewandte Chemie International Edition, 2013, 52(41): 10830-10834.
[170] Liu, R.Y., Buchwald, S.L. CuH-catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition [J]. Accounts of Chemical Research, 2020, 53(6): 1229–1243.
[171] Guo, S., Zhu, J., Buchwald, S.L. Enantioselective Synthesis of β-Amino Acid Derivatives Enabled by Ligand-controlled Reversal of Hydrocupration Regiochemistry [J]. Angewandte Chemie International Edition, 2020, 59(47): 20841-20845.
[172] Zhang, G., Liang, Y., Qin, T. et al. Copper-catalyzed Asymmetric Hydroamination: A Unified Strategy for the Synthesis of Chiral β-Amino Acid and Its Derivatives [J].CCS Chemistry, 2020, 2(8): 1737–1745.
[173] Takata, T., Nishikawa, D., Hirano, K. et al. Synthesis of α-Aminophosphines by Copper-catalyzed Regioselective Hydroamination of Vinylphosphines [J]. Chemistry - A European Journal, 2018, 24(43): 10975-10978.

所在学位评定分委会
化学系
国内图书分类号
O627.51
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353148
专题理学院_化学系
推荐引用方式
GB/T 7714
杨志萍. 钯、铜催化手性磷化合物的不对称合成研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849568-杨志萍-化学系.pdf(9575KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨志萍]的文章
百度学术
百度学术中相似的文章
[杨志萍]的文章
必应学术
必应学术中相似的文章
[杨志萍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。