[1] Lamberth, C. Amino Acid Chemistry in Crop Protection [J]. Tetrahedron, 2010, 66(36): 7239-7256.
[2] Lambrinoudaki, I., Christodoulakos, G., Botsis, D. Bisphosphonates [J]. Annals of the New York Academy of Sciences, 2006, 1092(1): 397-402.
[3] Clercq, E.D. Clinical Potential of the Acyclic Nucleoside Phosphonates Cidofovir, Adefovir, and Tenofovir in Treatment of DNA Virus and Retrovirus Infections [J]. Clinical Microbiology Reviews, 2003, 16(4): 569-596.
[4] Peterson, L.W., Sala-Rabanal, M., Krylov, I.S. et al. Serine Side Chain-Linked Peptidomimetic Conjugates of Cyclic HPMPC and HPMPA: Synthesis and Interaction with hPEPT1 [J]. Molecular Pharmaceutics, 2010, 7(6): 2349-2361.
[5] Guo, H., Fan, Y.C., Sun, Z. et al. Phosphine Organocatalysis [J]. Chemical Reviews, 2018, 118(20): 10049-10293.
[6] Ni, H., Chan, W.-L., Lu, Y. Phosphine-catalyzed Asymmetric Organic Reactions [J]. Chemical Reviews, 2018, 118(18): 9344-9411.
[7] Gong, S., Chang, Y.-L., Wu, K. et al. High-power-efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-transporting Materials [J]. Chemistry of Materials, 2014, 26(3): 1463-1470.
[8] Zhang, S., Yuan, D., Zhang, Q. et al. Highly Efficient Removal of Uranium from Highly Acidic Media Achieved Using a Phosphine Oxide and Amino Functionalized Superparamagnetic Composite Polymer Adsorbent [J]. Journal of Materials Chemistry A, 2020, 8(21): 10925-10934.
[9] Mallesham, G., Swetha, C., Niveditha, S. et al. Phosphine Oxide Functionalized Pyrenes as Efficient Blue Light Emitting Multifunctional Materials for Organic Light Emitting Diodes [J]. Journal of Materials Chemistry C, 2015, 3(6): 1208-1224.
[10] Kim, H., Lee, J., Jung, H. Study on the Carbamoyl Phosphine Oxide Moiety Functionalized Mesoporous Graphene for the Removal of Rare Earth Elements [J]. Journal of Porous Materials, 2019, 26(4): 931-939.
[11] Jin, S., Gonsalves, K.E. Synthesis and Characterization of Functionalized Poly(ε-caprolactone) Copolymers by Free-radical Polymerization [J]. Macromolecules, 1998, 31(4): 1010-1015.
[12] Zhang, Y., Yu, B., Wang, B. et al. Highly Effective P–P Synergy of a Novel DOPO-based Flame Retardant for Epoxy Resin [J]. Industrial and Engineering Chemistry Research, 2017, 56(5): 1245-1255.
[13] You, G., Cheng, Z., Tang, Y. et al. Functional Group Effect on Char Formation, Flame Retardancy and Mechanical Properties of Phosphonate-triazine-based Compound as Flame Retardant in Epoxy Resin [J]. Industrial and Engineering Chemistry Research, 2015, 54(30): 7309-7319.
[14] Suresh, A., Srinivasan, T.G., Rao, P.R.V. Extraction of U(VI), Pu(IV) and Th(IV) by Some Trialkyl Phosphates [J]. Solvent Extraction and Ion Exchange, 1994, 12(4): 727-744.
[15] Reddy, B.R., Neela Priya, D., Venkateswara Rao, S. et al. Solvent Extraction and Separation of Cd(II), Ni(II) and Co(II) from Chloride Leach Liquors of Spent Ni–Cd Batteries Using Commercial Organo-phosphorus Extractants [J]. Hydrometallurgy, 2005, 77(3): 253-261.
[16] Rémond, E., Bayardon, J., Ondel-Eymin, M.-J. et al. Stereoselective Synthesis of Unsaturated and Functionalized l-NHBoc Amino Acids, Using Wittig Reaction under Mild Phase-Transfer Conditions [J]. Journal of Organic Chemistry, 2012, 77(17): 7579-7587.
[17] Seto, H., Kuzuyama, T. Bioactive Natural Products with Carbon–phosphorus Bonds and Their Biosynthesis [J]. Natural Products Reports, 1999, 16(5): 589-596.
[18] Horsman, G.P., Zechel, D.L. Phosphonate Biochemistry [J]. Chemical Reviews, 2017, 117(8): 5704-5783.
[19] Shie, J.-J., Fang, J.-M., Wang, S.-Y. et al. Synthesis of Tamiflu and its Phosphonate Congeners Possessing Potent Anti-influenza Activity [J]. Journal of the American Chemical Society, 2007, 129(39): 11892-11893.
[20] Shie, J.-J., Fang, J.-M., Wong, C.-H. A Concise and Flexible Synthesis of the Potent Anti-influenza Agents Tamiflu and Tamiphosphor [J]. Angewandte Chemie International Edition, 2008, 47(31): 5788-5791.
[21] Cheng, T.-J.R., Weinheimer, S., Tarbet, E.B. et al. Development of Oseltamivir Phosphonate Congeners as Anti-influenza Agents [J]. Journal of Medicinal Chemistry, 2012, 55(20): 8657-8670.
[22] Dutartre, M., Bayardon, J., Juge, S. Applications and Stereoselective Syntheses of P-Chirogenic Phosphorus Compounds [J]. Chemical Society Reviews, 2016, 45(20): 5771-5794.
[23] Holshue, M.L., Debolt, C., Lindquist, S. et al. First Case of 2019 Novel Coronavirus in the United States [J]. New England Journal of Medicine, 2020, 382(10): 929-936.
[24] Vineyard, B.D., Knowles, W.S., Sabacky, M.J. et al. Asymmetric Hydrogenation. Rhodium Chiral Bisphosphine Catalyst [J]. Journal of the American Chemical Society, 1977, 99(18): 5946-5952.
[25] Xu, G., Senanayake, C.H., Tang, W. P-Chiral Phosphorus Ligands Based on a 2,3-Dihydrobenzo[d]
[1,3]oxaphosphole Motif for Asymmetric Catalysis [J]. Accounts of Chemical Research, 2019, 52(4): 1101-1112.
[26] Li, W., Zhang, J. Recent Developments in the Synthesis and Utilization of Chiral β-Aminophosphine Derivatives as Catalysts or Ligands [J]. Chemical Society Reviews, 2016, 45(6): 1657-1677.
[27] Saitoh, A., Morimoto, T., Achiwa, K. A Phosphorus-containing Chiral Amidine Ligand for Asymmetric Reactions: Enantioselective Pd-catalyzed Allylic Alkylation [J]. Tetrahedron: Asymmetry, 1997, 8(21): 3567-3570.
[28] Dai, Q., Liu, L., Qian, Y. et al. Construction of P-Chiral Alkenylphosphine Oxides through Highly Chemo-, Regio-, and Enantioselective Hydrophosphinylation of Alkynes [J]. Angewandte Chemie International Edition, 2020, 59(46): 20645-20650.
[29] Dai, Q., Li, W., Li, Z. et al. P-Chiral Phosphines Enabled by Palladium/XiaoPhos-catalyzed Asymmetric P-C Cross-coupling of Secondary Phosphine Oxides and Aryl Bromides [J]. Journal of the American Chemical Society, 2019, 141(51): 20556-20564.
[30] 苏亚军, 史福强. 手性磷酸在不对称反应中的应用 [J]. Acta Chimica Sinica, 2010, 30(4): 486-498.
[31] An, Q.-J., Xia, W., Ding, W.-Y. et al. Nitrosobenzene-enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric N-Arylbenzimidazoles [J]. Angewandte Chemie International Edition, 2021, 60(47): 24888-24893.
[32] Wu, S., Xiang, S.-H., Li, S. et al. Urea Group-directed Organocatalytic Asymmetric Versatile Dihalogenation of Alkenes and Alkynes [J]. Nature Catalysis, 2021, 4(8): 692-702.
[33] Cheng, Y.-F., Liu, J.-R., Gu, Q.-S. et al. Catalytic Enantioselective Desymmetrizing Functionalization of Alkyl Radicals via Cu(I)/CPA Cooperative Catalysis [J]. Nature Catalysis, 2020, 3(4): 401-410.
[34] Li, Z.-L., Fang, G.-C., Gu, Q.-S. et al. Recent Advances in Copper-catalysed Radical-involved Asymmetric 1,2-Difunctionalization of Alkenes [J]. Chemical Society Reviews, 2020, 49(1): 32-48.
[35] 朱仁义, 廖奎, 余金生 等. P-手性膦氧化物的不对称催化合成研究进展 [J]. Acta Chimica Sinica, 2020, 78(3): 193-216.
[36] Lemouzy, S., Giordano, L., Herault, D. et al. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules [J]. European Journal of Organic Chemistry, 2020, 2020(23): 3351-3366.
[37] Pakulski, Z., Pietrusiewicz, K.M. Enantioselective Desymmetrization of Phospholene Meso-epoxide by Nucleophilic Opening of the Epoxide [J]. Tetrahedron: Asymmetry, 2004, 15(1): 41-45.
[38] Nishida, G., Noguchi, K., Hirano, M. et al. Enantioselective Synthesis of P-Stereogenic Alkynylphosphine Oxides by Rh-catalyzed
[2+2+2] Cycloaddition [J]. Angewandte Chemie International Edition, 2008, 47(18): 3410-3413.
[39] Tahara, Y.-K., Sato, T., Matsubara, R. et al. Multi-substituted Dibenzophosphole Oxide Synthesis by the Catalytic
[2 + 2 + 2] Cycloaddition of Phosphorylbenzene-tethered Diynes with Various Alkynes [J]. Heterocycles, 2016, 93(2): 685-704.
[40] Beaud, R., Phipps, R.J., Gaunt, M.J. Enantioselective Cu-catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines [J]. Journal of the American Chemical Society, 2016, 138(40): 13183-13186.
[41] Zhang, Y., He, H., Wang, Q. et al. Asymmetric Synthesis of Chiral P-Stereogenic Triaryl Phosphine Oxides via Pd-catalyzed Kinetic Arylation of Diaryl Phosphine Oxides [J]. Tetrahedron Letters, 2016, 57(48): 5308-5311.
[42] De Azambuja, F., Carmona, R.C., Chorro, T.H.D. et al. Noncovalent Substrate-directed Enantioselective Heck Reactions: Synthesis of S- and P-Stereogenic Heterocycles [J]. Chemistry - A European Journal, 2016, 22(32): 11205-11209.
[43] Lim, K.M.-H., Hayashi, T. Dynamic Kinetic Resolution in Rhodium-catalyzed Asymmetric Arylation of Phospholene Oxides [J]. Journal of the American Chemical Society, 2017, 139(24): 8122-8125.
[44] Lin, Y., Ma, W.-Y., Sun, Q.-Y. et al. Catalytic Synthesis of Chiral Phosphole Oxides via Desymmetric C–H Arylation of o-Bromoaryl Phosphine Oxides [J]. Synlett, 2017, 28(12): 1432-1436.
[45] Li, Z., Lin, Z.-Q., Yan, C.-G. et al. Pd-catalyzed Asymmetric C–H Bond Activation for the Synthesis of P-Stereogenic Dibenzophospholes [J]. Organometallics, 2019, 38(20): 3916-3920.
[46] Jang, Y.-S., Dieckmann, M., Cramer, N. Cooperative Effects between Chiral Cpx -Iridium(III) Catalysts and Chiral Carboxylic Acids in Enantioselective C-H Amidations of Phosphine Oxides [J]. Angewandte Chemie International Edition, 2017, 56(47): 15088-15092.
[47] Wang, Z., Hayashi, T. Rhodium-catalyzed Enantioposition-selective Hydroarylation of Divinylphosphine Oxides with Aryl Boroxines [J]. Angewandte Chemie International Edition, 2018, 57(6): 1702-1706.
[48] Zheng, Y., Guo, L., Zi, W. Enantioselective and Regioselective Hydroetherification of Alkynes by Gold-catalyzed Desymmetrization of Prochiral Phenols with P-Stereogenic Centers [J]. Organic Letters, 2018, 20(22): 7039-7043.
[49] Jang, Y.-S., Wozniak, L., Pedroni, J. et al. Access to P- and Axially Chiral Biaryl Phosphine Oxides by Enantioselective CpxIr(III)-catalyzed C-H Arylations [J]. Angewandte Chemie International Edition, 2018, 57(39): 12901-12905.
[50] Liu, X.-T., Zhang, Y.-Q., Han, X.-Y. et al. Ni-catalyzed Asymmetric Allylation of Secondary Phosphine Oxides [J]. Journal of the American Chemical Society, 2019, 141(42): 16584-16589.
[51] Zhang, Y., Zhang, F., Chen, L. et al. Asymmetric Synthesis of P-Stereogenic Compounds via Thulium(III)-catalyzed Desymmetrization of Dialkynylphosphine Oxides [J]. ACS Catalysis, 2019, 9(6): 4834-4840.
[52] Fernández-Pérez, H., Vidal-Ferran, A. Stereoselective Catalytic Synthesis of P-Stereogenic Oxides via Hydrogenative Kinetic Resolution [J]. Organic. Letters, 2019, 21(17): 7019-7023.
[53] Li, Y.B., Tian, H., Yin, L. Copper(I)-catalyzed Asymmetric 1,4-Conjugate Hydrophosphination of alpha,beta-Unsaturated Amides [J]. Journal of the American Chemical Society, 2020, 142(47): 20098-20106.
[54] Yue, W.-J., Xiao, J.-Z., Zhang, S. et al. Rapid Synthesis of Chiral 1,2-Bisphosphine Derivatives through Copper(I)-catalyzed Asymmetric Conjugate Hydrophosphination [J]. Angewandte Chemie International Edition, 2020, 59(18): 7057-7062.
[55] Zhu, R.-Y., Chen, L., Hu, X.-S. et al. Enantioselective Synthesis of P-Chiral Tertiary Phosphine Oxides with an Ethynyl Group via Cu(I)-catalyzed Azide-alkyne Cycloaddition [J]. Chemical Science, 2020, 11(1): 97-106.
[56] Zhang, S., Xiao, J.-Z., Li, Y.-B. et al. Copper(I)-catalyzed Asymmetric Alkylation of Unsymmetrical Secondary Phosphines [J]. Journal of the American Chemical Society, 2021, 143(26): 9912−9921.
[57] Liu, X.-T., Han, X.-Y., Wu, Y. et al. Ni-catalyzed Asymmetric Hydrophosphination of Unactivated Alkynes [J]. Journal of the American Chemical Society, 2021, 143(30): 11309−11316.
[58] Zhang, C.-W., Hu, X.-Q., Dai, Y.-H. et al. Asymmetric C–H Activation for the Synthesis of P- and Axially Chiral Biaryl Phosphine Oxides by an Achiral Cp*Ir Catalyst with Chiral Carboxylic Amide [J]. ACS Catalysis, 2021, 193-199.
[59] Dai, Q., Liu, L., Zhang, J. Palladium/XiaoPhos-catalyzed Kinetic Resolution of sec-Phosphine Oxides by P-Benzylation [J]. Angewandte Chemie International Edition, 2021, 60(52): 27247-27252.
[60] Wu, Z.H., Cheng, A.Q., Yuan, M. et al. Cobalt-catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of P-Stereogenic Compounds [J]. Angewandte Chemie International Edition, 2021, 60(52): 27241-27246.
[61] Du, Z.-J., Guan, J., Wu, G.-J. et al. Pd(II)-catalyzed Enantioselective Synthesis of P-Stereogenic Phosphinamides via Desymmetric C-H Arylation [J]. Journal of the American Chemical Society, 2015, 137(2): 632-635.
[62] Chen, Y.-H., Qin, X.-L., Guan, J. et al. Pd-catalyzed Enantioselective C-H Arylation of Phosphinamides with Boronic Acids for the Synthesis of P-Stereogenic Compounds [J]. Tetrahedron: Asymmetry, 2017, 28(4): 522-531.
[63] Wu, G.-J., Tan, D.-X., Han, F.-S. The Phosphinamide-based Catalysts: Discovery, Methodology Development, and Applications in Natural Product Synthesis [J]. Accounts of Chemical Research, 2021, 54(23): 4354-4370.
[64] Lin, Z.-Q., Wang, W.-Z., Yan, S.-B. et al. Palladium-catalyzed Enantioselective C-H Arylation for the Synthesis of P-Stereogenic Compounds [J]. Angewandte Chemie International Edition, 2015, 54(21): 6265-6269.
[65] Liu, L., Zhang, A.-A., Wang, Y. et al. Asymmetric Synthesis of P-Stereogenic Phosphinic Amides via Pd(0)-catalyzed Enantioselective Intramolecular C-H Arylation [J]. Organic Letters, 2015, 17(9): 2046-2049.
[66] Sun, Y., Cramer, N. Rhodium(III)-catalyzed Enantiotopic C-H Activation Enables Access to P-Chiral Cyclic Phosphinamides [J]. Angewandte Chemie International Edition, 2017, 56(1): 364-367.
[67] Sun, Y., Cramer, N. Tailored Trisubstituted Chiral CpxRh(III) Catalysts for Kinetic Resolutions of Phosphinic Amides [J]. Chemical Science, 2018, 9(11): 2981-2985.
[68] Genov, G.R., Douthwaite, J.L., Lahdenpera, A.S.K. et al. Enantioselective Remote C-H Activation Directed by a Chiral Cation [J]. Science, 2020, 367(6483): 1246-1251.
[69] Zhang, X.-L., Qi, X., Wu, Y.-X. et al. P-Stereogenic N-Vinylphosphonamides Enabled by Asymmetric Allylic Substitution-isomerization [J]. Cell Reports Physical Science, 2021, 2(10): 100594-100610.
[70] Harvey, J.S., Malcolmson, S.J., Dunne, K.S. et al. Enantioselective Synthesis of P-Stereogenic Phosphinates and Phosphine Oxides by Molybdenum-catalyzed Asymmetric Ring-closing Metathesis [J]. Angewandte Chemie International Edition, 2009, 48(4): 762-766.
[71] Huang, Y., Li, Y., Leung, P.-H. et al. Asymmetric Synthesis of P-Stereogenic Diarylphosphinites by Palladium-catalyzed Enantioselective Addition of Diarylphosphines to Benzoquinones [J]. Journal of the American Chemical Society, 2014, 136(13): 4865-4868.
[72] Xu, G., Li, M., Wang, S. et al. Efficient Synthesis of P-Chiral Biaryl Phosphonates by Stereoselective Intramolecular Cyclization [J]. Organic. Chemistry. Frontiers, 2015, 2(10): 1342-1345.
[73] Trost, B.M., Spohr, S.M., Rolka, A.B. et al. Desymmetrization of Phosphinic Acids via Pd-Catalyzed Asymmetric Allylic Alkylation: Rapid Access to P-Chiral Phosphinates [J]. Journal of the American Chemical Society, 2019, 141(36): 14098-14103.
[74] Song, S.-Y., Li, Y., Ke, Z. et al. Iridium-catalyzed Enantioselective C–H Borylation of Diarylphosphinates [J]. ACS Catalysis, 2021, 11(21): 13445-13451.
[75] Zhang, Q., Liu, X.T., Wu, Y. et al. Ni-catalyzed Enantioselective Allylic Alkylation of H-Phosphinates [J]. Organic Letters, 2021, 23(22): 8683-8687.
[76] Fu, X., Loh, W.-T., Zhang, Y. et al. Chiral Guanidinium Salt Catalyzed Enantioselective Phospha-Mannich Reactions [J]. Angewandte Chemie International Edition, 2009, 48(40): 7387-7390.
[77] Toda, Y., Pink, M., Johnston, J.N. Brønsted Acid Catalyzed Phosphoramidic Acid Additions to Alkenes: Diastereo- and Enantioselective Halogenative Cyclizations for the Synthesis of C- and P-Chiral Phosphoramidates [J]. Journal of the American Chemical Society, 2014, 136(42): 14734-14737.
[78] Huang, Z., Huang, X., Li, B. et al. Access to P-Stereogenic Phosphinates via N-Heterocyclic Carbene-catalyzed Desymmetrization of Bisphenols [J]. Journal of the American Chemical Society, 2016, 138(24): 7524-7527.
[79] Yang, G.-H., Li, Y., Li, X. et al. Access to P-Chiral Phosphine Oxides by Enantioselective Allylic Alkylation of Bisphenols [J]. Chemical Science, 2019, 10(15): 4322-4327.
[80] Qiu, H., Dai, Q., He, J. et al. Access to P-Chiral sec- and tert-Phosphine Oxides Enabled by Le-Phos-catalyzed Asymmetric Kinetic Resolution [J]. Chemical Science, 2020, 11(36): 9983-9988.
[81] Huang, Q.-H., Zhou, Q.-Y., Yang, C. et al. Access to P-Stereogenic Compounds via Desymmetrizing Enantioselective Bromination [J]. Chemical Science, 2021, 12(12): 4582–4587.
[82] Pican, S., Gaumont, A.-C. Palladium Catalysed Enantioselective Phosphination Reactions Using Secondary Phosphine-boranes and Aryl Iodide [J]. Chemical Communications, 2005, 2005(18): 2393-2395.
[83] Chan, V.S., Stewart, I.C., Bergman, R.G. et al. Asymmetric Catalytic Synthesis of P-Stereogenic Phosphines via a Nucleophilic Ruthenium Phosphido Complex [J]. Journal of the American Chemical Society, 2006, 128(9): 2786-2787.
[84] Join, B., Mimeau, D., Delacroix, O. et al. Pallado-catalysed Hydrophosphination of Alkynes: Access to Enantio-enriched P-Stereogenic Vinyl Phosphine–boranes [J]. Chemical Communications, 2006, 2006(30): 3249-3251.
[85] Scriban, C., Glueck, D.S. Platinum-catalyzed Asymmetric Alkylation of Secondary Phosphines: Enantioselective Synthesis of P-Stereogenic Phosphines [J]. Journal of the American Chemical Society, 2006, 128(9): 2788-2789.
[86] Blank, N.F., Moncarz, J.R., Brunker, T.J. et al. Palladium-catalyzed Asymmetric Phosphination. Scope, Mechanism, and Origin of Enantioselectivity [J]. Journal of the American Chemical Society, 2007, 129(21): 6847-6858.
[87] Chan, V.S., Bergman, R.G., Toste, F.D. Pd-catalyzed Dynamic Kinetic Enantioselective Arylation of Silylphosphines [J]. Journal of the American Chemical Society, 2007, 129(49): 15122-15123.
[88] Li, C., Bian, Q.-L., Xu, S. et al. Palladium-catalyzed 1,4-Addition of Secondary Alkylphenylphosphines to α,β-Unsaturated Carbonyl Compounds for the Synthesis of Phosphorus- and Carbon-Stereogenic Compounds [J]. Organic Chemistry Frontiers, 2014, 1(5): 541-545.
[89] Wang, C., Huang, K., Ye, J. et al. Asymmetric Synthesis of P-Stereogenic Secondary Phosphine-boranes by an Unsymmetric Bisphosphine Pincer-Nickel Complex [J]. Journal of the American Chemical Society, 2021, 143(15): 5685-5690.
[90] Nishimura, T., Hirabayashi, S., Yasuhara, Y. et al. Rhodium-catalyzed Asymmetric Hydroarylation of Diphenylphosphinylallenes with Arylboronic Acids [J]. Journal of the American Chemical Society, 2006, 128(8): 2556-2557.
[91] Nishimura, T., Guo, X.-X., Hayashi, T. Rhodium-catalyzed Asymmetric Addition of Terminal Alkynes to Diarylphosphinylallenes [J]. Chemistry-an Asian Journal, 2008, 3(8-9): 1505-1510.
[92] Kawamoto, T., Hirabayashi, S., Guo, X.-X. et al. Rhodium-catalyzed Asymmetric Hydroalkoxylation and Hydrosulfenylation of Diphenylphosphinylallenes [J]. Chemical Communications, 2009, 2009(24): 3528-3530.
[93] Butti, P., Rochat, R., Sadow, A.D. et al. Palladium-catalyzed Enantioselective Allylic Phosphination [J]. Angewandte Chemie International Edition, 2008, 47(26): 4878-4881.
[94] Zhang, L., Liu, W., Zhao, X. Carbon-phosphorus Bond Formation by Enantioselective Palladium-catalyzed Allylation of Diphenylphosphine Oxide [J]. European Journal of Organic Chemistry, 2014, 2014(31): 6846-6849.
[95] Sun, W., Hong, L., Liu, C. et al. Base-accelerated Enantioselective Substitution of Morita-Baylis-Hillman Carbonates with Dialkyl Phosphine Oxides [J]. Organic Letters, 2010, 12(17): 3914-3917.
[96] Hong, L., Sun, W., Liu, C. et al. Enantioselective Construction of Allylic Phosphine Oxides through Substitution of Morita-Baylis-Hillman Carbonates with Phosphine oxides [J]. Chemical Communications, 2010, 46(16): 2856-2858.
[97] Yang, X.-Y., Tay, W.S., Li, Y. et al. Asymmetric 1,4-Conjugate Addition of Diarylphosphines to α,β,γ,δ-Unsaturated Ketones Catalyzed by Transition-metal Pincer Complexes [J]. Organometallics, 2015, 34(20): 5196-5201.
[98] Nie, S.-Z., Davison, R.T., Dong, V.M. Enantioselective Coupling of Dienes and Phosphine Oxides [J]. Journal of the American Chemical Society, 2018, 140(48): 16450-16454.
[99] Long, J., Li, Y., Zhao, W. et al. Nickel/Brønsted Acid Dual-catalyzed Regio- and Enantioselective Hydrophosphinylation of 1,3-Dienes: Access to Chiral Allylic Phosphine Oxides [J]. Chemical Science, 2022, 13(5): 1390-1397.
[100] Gu, Z., Zhou, J., Jiang, G.-F. et al. Synthesis of Chiral γ-Aminophosphonates through the Organocatalytic Hydrophosphonylation of Azadienes with Phosphites [J]. Organic Chemistry Frontiers, 2018, 5(7): 1148-1151.
[101] Chen, C., Peters, J.C., Fu, G.C. Photoinduced Copper-catalysed Asymmetric Amidation via Ligand Cooperativity [J]. Nature, 2021, 596(7871): 250-256.
[102] Bhattacharya, A.K., Thyagarajan, G. Michaelis-Arbuzov Rearrangement [J]. Chemical Reviews, 1981, 81(4): 415-430.
[103] Isley, N.A., Linstadt, R.T.H., Slack, E.D. et al. Copper-catalyzed Hydrophosphinations of Styrenes in Water at Room Temperature [J]. Dalton Transactions, 2014, 43(35): 13196-13200.
[104] Hirai, T., Han, L.-B. Air-induced anti-Markovnikov Addition of Secondary Phosphine Oxides and H-Phosphinates to Alkenes [J]. Organic Letters, 2007, 9(1): 53-55.
[105] Janesko, B.G., Fisher, H.C., Bridle, M.J. et al. P(=O)H to P-OH Tautomerism: A Theoretical and Experimental Study [J]. Journal of Organic Chemistry, 2015, 80(20): 10025-10032.
[106] Wang, X.-B., Goto, M., Han, L.-B. Efficient Asymmetric Hydrogenation of α-Acetamidocinnamates through a Simple, Readily Available Monodentate Chiral H-Phosphinate [J]. Chemistry - A European Journal, 2014, 20(13): 3631-3635.
[107] Shaikh, T.M., Weng, C.-M., Hong, F.-E. Secondary Phosphine Oxides: Versatile ligands in Transition Metal-catalyzed Cross-coupling Reactions [J]. Coordination Chemistry Reviews, 2012, 256(9-10): 771-803.
[108] Han, L.-B., Tanaka, M. Palladium-catalyzed Hydrophosphorylation of Alkynes via Oxidative Addition of HP(O)(OR)2 [J]. Journal of the American Chemical Society, 1996, 118(6): 1571-1572.
[109] Greenberg, S., Stephan, D.W. Stoichiometric and Catalytic Activation of P-H and P-P bonds [J]. Chemical Society Reviews, 2008, 37(12): 2798.
[110] Coudray, L., Montchamp, J.-L. Recent Developments in the Addition of Phosphinylidene-containing Compounds to Unactivated Unsaturated Hydrocarbons: Phosphorus-carbon Bond Formation by Hydrophosphinylation and Related Processes [J]. European Journal of Organic Chemistry, 2008, 2008(21): 3601-3613.
[111] Chen, T., Zhao, C.-Q., Han, L.-B. Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism [J]. Journal of the American Chemical Society, 2018, 140(8): 3139-3155.
[112] Han, L.-B., Zhao, C.-Q., Onozawa, S.-Y. et al. Retention of Configuration on the Oxidative Addition of P-H Bond to Platinum(0) Complexes: The First Straightforward Synthesis of Enantiomerically Pure P-Chiral Alkenylphosphinates via Palladium-Catalyzed Stereospecific Hydrophosphinylation of Alkynes [J]. Journal of the American Chemical Society, 2002, 124(15): 3842-3843.
[113] Bravo-Altamirano, K., Huang, Z., Montchamp, J.-L. Palladium-catalyzed Phosphorus–carbon Bond Formation: Cross-coupling Reactions of Alkyl Phosphinates with Aryl, Heteroaryl, Alkenyl, Benzylic, and Allylic Halides and Triflates [J]. Tetrahedron, 2005, 61(26): 6315-6329.
[114] Li, J.-N., Liu, L., Fu, Y. et al. What Are the pKa Values of Organophosphorus Compounds? [J]. Tetrahedron, 2006, 62(18): 4453-4462.
[115] Li, C., Wang, Q., Zhang, J.-Q. et al. Water Determines the Products: an Unexpected Brønsted Acid-catalyzed PO-R Cleavage of P(III) Esters Selectively Producing P(O)-H and P(O)-R Compounds [J]. Greem Chemistry, 2019, 21(11): 2916-2922.
[116] 张毛毛, 骆元元, 陆良秋 等. 过渡金属与有机小分子协同催化的不对称烯丙基取代反应研究进展 [J]. Acta Chimica Sinica, 2018, 76(11): 838-849.
[117] 杨普苏, 刘晨旭, 张文文 等. 铱催化中氮茚衍生物的Friedel-Crafts类型不对称烯丙基取代反应 [J]. Acta Chimica Sinica, 2021, 79(6): 742-746.
[118] Blieck, R., Taillefer, M., Monnier, F. Metal-catalyzed Intermolecular Hydrofunctionalization of Allenes: Easy Access to Allylic Structures via the Selective Formation of C–N, C–C, and C–O Bonds [J]. Chemical Reviews, 2020, 120(24): 13545-13598.
[119] Li, G., Huo, X., Jiang, X. et al. Asymmetric Synthesis of Allylic Compounds via Hydrofunctionalisation and Difunctionalisation of Dienes, Allenes, and Alkynes [J]. Chemical Society Reviews, 2020, 49(7): 2060-2118.
[120] Trost, B.M., Jaekel, C., Plietker, B. Palladium-catalyzed Asymmetric Addition of Pronucleophiles to Allenes [J]. Journal of the American Chemical Society, 2003, 125(15): 4438-4439.
[121] Zhou, H., Wei, Z., Zhang, J. et al. From Palladium to Brønsted Acid Catalysis: Highly Enantioselective Regiodivergent Addition of Alkoxyallenes to Pyrazolones [J]. Angewandte Chemie International Edition, 2017, 56(4): 1077-1081.
[122] Trost, B.M., Xie, J., Sieber, J.D. The Palladium Catalyzed Asymmetric Addition of Oxindoles and Allenes: an Atom-economical Versatile Method for the Construction of Chiral Indole Alkaloids [J]. Journal of the American Chemical Society, 2011, 133(50): 20611-20622.
[123] Trost, B.M., Xie, J. Palladium-Catalyzed Diastereo- and Enantioselective Wagner-Meerwein Shift: Control of Absolute Stereochemistry in the C-C Bond Migration Event [J]. Journal of the American Chemical Society, 2008, 130(19): 6231-6242.
[124] Trost, B.M., Xie, J. Palladium-catalyzed Asymmetric Ring Expansion of Allenylcyclobutanols: An Asymmetric Wagner-Meerwein Shift [J]. Journal of the American Chemical Society, 2006, 128(18): 6044-6045.
[125] Trost, B.M., Simas, A.B.C., Plietker, B. et al. Enantioselective Palladium-catalyzed Addition of 1,3-Dicarbonyl Compounds to an Allene Derivative [J]. Chemistry - A European Journal, 2005, 11(23): 7075-7082.
[126] Lim, W., Kim, J., Rhee, Y.H. Pd-catalyzed Asymmetric Intermolecular Hydroalkoxylation of Allene: An Entry to Cyclic Acetals with Activating Group-free and Flexible Anomeric Control [J]. Journal of the American Chemical Society, 2014, 136(39): 13618-13621.
[127] Kim, H., Rhee, Y.H. Stereodefined N,O-Acetals: Pd-catalyzed Synthesis from Homopropargylic Amines and Utility in the Flexible Synthesis of 2,6-Substituted Piperidines [J]. Journal of the American Chemical Society, 2012, 134(9): 4011-4014.
[128] Kim, H., Lim, W., Im, D. et al. Synthetic Strategy for Cyclic Amines: Stereodefined Cyclic N,O-Acetals as Stereocontrol and Diversity-generating Element [J]. Angewandte Chemie International Edition, 2012, 51(48): 12055-12058.
[129] Jiang, L., Jia, T., Wang, M. et al. Pd-catalyzed Enantioselective Hydroalkoxylation of Alkoxyallenes with Phenol for Construction of Acyclic O,O-Acetals [J]. Organic Letters, 2015, 17(5): 1070-1073.
[130] Jang, S.H., Kim, H.W., Jeong, W. et al. Palladium-catalyzed Asymmetric Nitrogen-selective Addition Reaction of Indoles to Alkoxyallenes [J]. Organic Letters, 2018, 20(4): 1248-1251.
[131] Jang, D.-J., Lee, S., Lee, J. et al. Palladium-catalyzed Asymmetric Decarboxylative Addition of β-Keto Acids to Heteroatom-substituted Allenes [J]. Angewandte Chemie International Edition, 2021, 60(41): 22166 –22171.
[132] Gao, Z., Yan, C.-X., Qian, J. et al. Enantioselective Synthesis of Axially Chiral Sulfonamides via Atroposelective Hydroamination of Allenes [J]. ACS Catalysis., 2021, 11(12): 6931-6938.
[133] Bernar, I., Fiser, B., Blanco-Ania, D. et al. Pd-catalyzed Hydroamination of Alkoxyallenes with Azole Heterocycles: Examples and Mechanistic Proposal [J]. Organic Letters, 2017, 19(16): 4211-4214.
[134] Koschker, P., Lumbroso, A., Breit, B. Enantioselective Synthesis of Branched Allylic Esters via Rhodium-catalyzed Coupling of Allenes with Carboxylic acids [J]. Journal of the American Chemical Society, 2011, 133(51): 20746-20749.
[135] Cooke, M.L., Xu, K., Breit, B. Enantioselective Rhodium-catalyzed Synthesis of Branched Allylic Amines by Intermolecular Hydroamination of Terminal Allenes [J]. Angewandte Chemie International Edition, 2012, 51(43): 10876-10879.
[136] Pritzius, A.B., Breit, B. Z-Selective Hydrothiolation of Racemic 1,3-Disubstituted Allenes: An Atom-economic Rhodium-catalyzed Dynamic Kinetic Resolution [J]. Angewandte Chemie International Edition, 2015, 54(52): 15818-15822.
[137] Beck, T.M., Breit, B. Regio- and Enantioselective Rhodium-catalyzed Addition of 1,3-Diketones to Allenes: Construction of Asymmetric Tertiary and Quaternary All Carbon Centers [J]. Angewandte Chemie International Edition, 2017, 56(7): 1903-1907.
[138] Yang, K., Bao, X., Liu, S. et al. Asymmetric Addition of Pyrazolones to Allenamides Catalyzed by a Chiral Phosphoric Acid [J]. European Journal of Organic Chemistry, 2018, 2018(46): 6469-6473.
[139] Lin, J.-S., Li, T.-T., Jiao, G.-Y. et al. Chiral Brønsted Acid Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes and Asymmetric Hydroamination of Dienes [J]. Angewandte Chemie International Edition, 2019, 58(21): 7092-7096.
[140] Zhao, C.-Q., Han, L.-B., Tanaka, M. Palladium-catalyzed Hydrophosphorylation of Allenes Leading to Regio- and Stereoselective Formation of Allylphosphonates [J]. Organometallics, 2000, 19(21): 4196-4198.
[141] Bravo-Altamirano, K., Abrunhosa-Thomas, I., Montchamp, J.-L. Palladium-catalyzed Reactions of Hypophosphorous Compounds with Allenes, Dienes, and Allylic Electrophiles: Methodology for the Synthesis of Allylic H-Phosphinates [J]. Journal of Organic Chemistry, 2008, 73(6): 2292-2301.
[142] Yamamoto, Y., Al-Masum, M. Palladium Catalyzed α-Addition of Certain Pronucleophiles to Alkoxyallenes [J]. Synlett, 1995, 1995(09): 969-970.
[143] Purdy, R.H., Morrow, A.L., Moore, P.H. et al. Stress-induced Elevations of Gamma-aminobutyric Acid Type A Receptor-active Steroids in the Rat Brain [J]. Proceedings of the National Academy of Sciences, 1991, 88(10): 4553-4557.
[144] Silverman, R.B. From Basic Science to Blockbuster Drug: The Discovery of Lyrica [J]. Angewandte Chemie International Edition, 2008, 47(19): 3500-3504.
[145] Hoekstra, M.S., Sobieray, D.M., Schwindt, M.A. et al. Chemical Development of CI-1008, an Enantiomerically Pure Anticonvulsant [J]. Organic Process Research & Development, 1997, 1(1): 26-38.
[146] Bowery, N.G., Hill, D.R., Hudson, A.L. et al. (–)-Baclofen Decreases Neurotransmitter Release in the Mammalian CNS by an Action at a Novel GABA Receptor [J]. Nature, 1980, 283(5742): 92-94.
[147] Hu, B., Deng, L. Catalytic Asymmetric Synthesis of Trifluoromethylated γ-Amino Acids through the Umpolung Addition of Trifluoromethyl Imines to Carboxylic Acid Derivatives [J]. Angewandte Chemie International Edition, 2018, 57(8): 2233-2237.
[148] Guo, L., Chi, Y., Almeida, A.M. et al. Stereospecific Synthesis of Conformationally Constrained γ-Amino Acids: New Foldamer Building Blocks that Support Helical Secondary Structure [J]. Journal of the American Chemical Society, 2009, 131(44): 16018-16020.
[149] Luo, W., Sun, Z., Fernando, E.H.N. et al. Asymmetric Ring-opening of Donor-Acceptor Cyclopropanes with Primary Arylamines Catalyzed by a Chiral Heterobimetallic Catalyst [J]. ACS Catalysis, 2019, 9(9): 8285-8293.
[150] Gomez, J.E., Guo, W., Gaspa, S. et al. Copper-catalyzed Synthesis of γ-Amino Acids Featuring Quaternary Stereocenters [J]. Angewandte Chemie International Edition, 2017, 56(47): 15035-15038.
[151] Zheng, D., Studer, A. Asymmetric Synthesis of Heterocyclic γ-Amino Acid and Diamine Derivatives by Three-component Radical Cascade Reactions [J]. Angewandte Chemie International Edition, 2019, 58(44): 15803-15807.
[152] Chen, X.-Y., Xia, F., Cheng, J.-T. et al. Highly Enantioselective γ-Amination by N-Heterocyclic Carbene Catalyzed
[4+2] Annulation of Oxidized Enals and Azo Dicarboxylates [J]. Angewandte Chemie International Edition, 2013, 52(40): 10644-10647.
[153] Yager, K.M., Taylor, C.M., Smith, A.B., Iii. Asymmetric Synthesis of α-Aminophosphonates via Diastereoselective Addition of Lithium Diethyl Phosphite to Chelating Imines [J]. Journal of the American Chemical Society, 1994, 116(20): 9377-9378.
[154] Orsini, F., Sello, G., Sisti, M. Aminophosphonic Acids and Derivatives. Synthesis and Biological Applications [J]. Current Medicinal Chemistry, 2010, 17(3): 264-289.
[155] Govea, R.M., Zhou, S., Carlton, S.M. Group III Metabotropic Glutamate Receptors and Transient Receptor Potential Vanilloid 1 Co-localize and Interact on Nociceptors [J]. Neuroscience, 2012, 217( ): 130-139.
[156] Yang, Q., Yang, S.-D. Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-amino Acids via Palladium-catalyzed Alkylation of Unactivated C(sp3)–H Bonds [J]. ACS Catalysis, 2017, 7(8): 5220-5224.
[157] Ye, L.-W., Zhou, J., Tang, Y. Phosphine-triggered Synthesis of Functionalized Cyclic Compounds [J]. Chemical Society Reviews, 2008, 37(6): 1140-1152.
[158] Cowen, B.J., Miller, S.J. Enantioselective Catalysis and Complexity Generation from Allenoates [J]. Chemical Society Reviews, 2009, 38(11): 3102-3116.
[159] Cheng, M.-X., Ma, R.-S., Yang, Q. et al. Chiral Brønsted Acid Catalyzed Enantioselective Phosphonylation of Allylamine via Oxidative Dehydrogenation Coupling [J]. Organic Letters, 2016, 18(13): 3262-3265.
[160] Huang, M., Li, C., Huang, J. et al. Palladium-catalyzed Asymmetric Addition of Diarylphosphines to N-Tosylimines [J]. Chemical Communications, 2012, 48(90): 11148-11150.
[161] Chen, D.-H., Sun, W.-T., Zhu, C.-J. et al. Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis [J]. Angewandte Chemie International Edition, 2021, 60(16): 8827-8831.
[162] Feng, J.-J., Huang, M., Lin, Z.-Q. et al. Palladium-catalyzed Asymmetric 1,4-Addition of Diarylphosphines to Nitroalkenes for the Synthesis of Chiral P,N-Compounds [J]. Advanced Synthesis & Catalysis, 2012, 354(16): 3122-3126.
[163] Du, H.-Q., Hu, X.-P. Rh-catalyzed Asymmetric Hydrogenation of (Z)-β-Phosphorylated Enamides: Highly Enantioselective Access to β-Aminophosphines [J]. Organic Letters, 2019, 21(22): 8921-8924.
[164] Chen, H.-X., Kang, J., Chang, R. et al. Synthesis of α,α-Difluorinated Phosphonate pSer/pThr Mimetics via Rhodium-catalyzed Asymmetric Hydrogenation of β-Difluorophosphonomethyl α-(Acylamino)acrylates [J]. Organic Letters, 2018, 20(11): 3278-3281.
[165] Duan, H.-Z., Chen, H.-X., Yu, Q. et al. Stereoselective Synthesis of a Phosphonate pThr Mimetic via Palladium-catalyzed γ-C(sp3)-H Activation for Peptide Preparation [J]. Organic & Biomolecular Chemistry, 2019, 17(8): 2099-2102.
[166] 李翼, 徐明华. 不对称Petasis反应在手性胺类化合物合成中的应用 [J]. Acta Chimica Sinica, 2021, 79(11): 1345-1359.
[167] 胡书博, 陈木旺, 翟小勇 等. 不对称氢化杂环亚胺合成四氢吡咯/吲哚
[1,2-a]并吡嗪 [J]. Acta Chimica Sinica, 2018, 76(2): 103-106.
[168] Zhu, S., Niljianskul, N., Buchwald, S.L. Enantio- and Regioselective CuH-catalyzed Hydroamination of Alkenes [J]. Journal of the American Chemical Society, 2013, 135(42): 15746-15749.
[169] Miki, Y., Hirano, K., Satoh, T. et al. Copper-catalyzed Intermolecular Regioselective Hydroamination of Styrenes with Polymethylhydrosiloxane and Hydroxylamines [J]. Angewandte Chemie International Edition, 2013, 52(41): 10830-10834.
[170] Liu, R.Y., Buchwald, S.L. CuH-catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition [J]. Accounts of Chemical Research, 2020, 53(6): 1229–1243.
[171] Guo, S., Zhu, J., Buchwald, S.L. Enantioselective Synthesis of β-Amino Acid Derivatives Enabled by Ligand-controlled Reversal of Hydrocupration Regiochemistry [J]. Angewandte Chemie International Edition, 2020, 59(47): 20841-20845.
[172] Zhang, G., Liang, Y., Qin, T. et al. Copper-catalyzed Asymmetric Hydroamination: A Unified Strategy for the Synthesis of Chiral β-Amino Acid and Its Derivatives [J].CCS Chemistry, 2020, 2(8): 1737–1745.
[173] Takata, T., Nishikawa, D., Hirano, K. et al. Synthesis of α-Aminophosphines by Copper-catalyzed Regioselective Hydroamination of Vinylphosphines [J]. Chemistry - A European Journal, 2018, 24(43): 10975-10978.
修改评论