[1] Bringmann G, Gulder T, Gulder T A M, et al. Atroposelective Total Synthesis of Axially Chiral Biaryl Natural Products[J]. Chemcal Reviews, 2005, 111(2): 563-639.
[2] Bringmann G, Menche D. Stereoselective Total Synthesis of Axially Chiral Natural Products via Biaryl Lactones[J]. Accounts of Chemical Research, 2001, 34(8): 615-624.
[3] Hughes C C, Kauffman C A, Jensen P R, et al. Structures, reactivities, and antibiotic properties of the marinopyrroles A-F[J]. The Journal of Organic Chemistry, 2010, 75(10): 3240-3250.
[4] Baudoin O. The Asymmetric Suzuki Coupling Route to Axially Chiral Biaryls[J]. European Journal of Organic Chemistry, 2005, 2005(20): 4223-4229.
[5] Renzi P. Organocatalytic synthesis of axially chiral atropisomers[J]. Organic & Biomolecular Chemistry, 2017, 15(21): 4506-4516.
[6] Yamanaka K, Ryan K S, Gulder T A, et al. Flavoenzyme-catalyzed atropo-selective N,C-bipyrrole homocoupling in marinopyrrole biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(30): 12434-12437.
[7] Collins B S L, Kistemaker J C M, Otten E, et al. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle[J]. Nature Chemistry, 2016, 8(9): 860-866.
[8] Sapotta M, Spenst P, Saha-Möller C R, et al. Guest-mediated chirality transfer in the host–guest complexes of an atropisomeric perylene bisimide cyclophane host[J]. Organic Chemistry Frontiers, 2019, 6(7): 892-899.
[9] Takaishi K, Yasui M, Ema T. Binaphthyl-Bipyridyl Cyclic Dyads as a Chiroptical Switch[J]. Journal of the American Chemical Society, 2018, 140(16): 5334-5338.
[10] Cheng J K, Xiang S H, Li S, et al. Recent Advances in Catalytic Asymmetric Construction of Atropisomers[J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[11] Li T Z, Liu S J, Tan W, et al. Catalytic Asymmetric Construction of Axially Chiral Indole-Based Frameworks: An Emerging Area[J]. Chemistry-A European Journal, 2020, 26(68): 15779-15792.
[12] Wang Y B, Tan B. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis[J]. Accounts of Chemical Research, 2018, 51(2): 534-547.
[13] Miyaura N, Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J]. Chemical Reviews, 1995, 95(7): 2457-2483.
[14] Miyaura N, Yanagi T, Suzuki A. The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases[J]. Synthetic Communications, 1981, 11(7): 513-519.
[15] Negishi E, King A O, Okukado N. Selective Carbon-Carbon Bond Formation via Transition Metal Catalysis. 3. A Highly Selective Synthesis of Unsymmetrical Biaryls and Diarylmethanes by the Nickel- or Palladium-Catalyzed Reaction of Aryl- and Benzylzinc Derivatives with Aryl Halides[J]. The Journal of Organic Chemistry, 1977, 42(10): 1821-1823.
[16] Hatakeyama T, Hashimoto S, Ishizuka K, et al. Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides[J]. Journal of the American Chemical Society, 2009, 131(33): 11949-11963.
[17] Wowk V, Rousseau L, Lefèvre G. Importance of Two-Electron Processes in Fe-Catalyzed Aryl-(hetero)aryl Cross-Couplings: Evidence of Fe0/FeII Couple Implication[J]. Organometallics, 2021, 40(19): 3253-3266.
[18] Xu L C, Liu K M, Duan X F. Iron-Catalyzed Room Temperature Cross-Couplings of Bromophenols with Aryl Grignard Reagents[J]. Advanced Synthesis & Catalysis, 2019, 361(23): 5421-5427.
[19] Li B J, Li Y Z, Lu X Y, et al. Cross-coupling of aryl/alkenyl pivalates with organozinc reagents through nickel-catalyzed C-O bond activation under mild reaction conditions[J]. Angewandte Chemie International Edition, 2008, 47(52): 10124-10127.
[20] Yu D G, Shi Z J. Mutual activation: Suzuki-Miyaura coupling through direct cleavage of the sp2 C-O bond of naphtholate[J]. Angewandte Chemie International Edition, 2011, 50(31): 7097-7100.
[21] Zhang Y F, Shi Z J. Upgrading Cross-Coupling Reactions for Biaryl Syntheses[J]. Accounts of Chemical Research, 2019, 52(1): 161-169.
[22] Kuzmina O M, Steib A K, Markiewicz J T, et al. Ligand-accelerated iron- and cobalt-catalyzed cross-coupling reactions between N-heteroaryl halides and aryl magnesium reagents[J]. Angewandte Chemie International Edition, 2013, 52(18): 4945-4949.
[23] Punji B, Song W, Shevchenko G A, et al. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides[J]. Chemistry-A European Journal, 2013, 19(32): 10605-10610.
[24] Tailor S B, Manzotti M, Smith G J, et al. Cobalt-Catalyzed Coupling of Aryl Chlorides with Aryl Boron Esters Activated by Alkoxides[J]. ACS Catalysis, 2021, 11(7): 3856-3866.
[25] Hull K L, Lanni E L, Sanford M S. Highly Regioselective Catalytic Oxidative Coupling Reactions: Synthetic and Mechanistic Investigations[J]. Journal of the American Chemical Society, 2006, 128(43): 14047-14049.
[26] Wei Y, Su W. Pd(OAc)2-Catalyzed Oxidative C-H/C-H Cross-Coupling of Electron-Deficient Polyfluoroarenes with Simple Arenes[J]. Journal of theAmerican Chemical Society, 2010, 132(46): 16377-16379.
[27] Li B J, Tian S L, Fang Z, et al. Multiple C-H activations to construct biologically active molecules in a process completely free of organohalogen and organometallic components[J]. Angewandte Chemie International Edition, 2008, 47(6): 1115-1118.
[28] Chang L, An Q, Duan L, et al. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis[J]. Chemcal Reviews, 2022, 122(2): 2429-2486.
[29] Heinrich M R, Radicals in Synthesis III, Vol. 320, Springer, Berlin, 2011.
[30] Studer A, Curran D P. Catalysis of Radical Reactions: A Radical Chemistry Perspective[J]. Angewandte Chemie International Edition, 2016, 55(1): 58-102.
[31] Li T, Tan G, Shao D, et al. Magnetic Bistability in a Discrete Organic Radical[J]. Journal of the American Chemical Society, 2016, 138(32): 10092-10095.
[32] Yong G-P, Zhang Y-M, She W-L, et al. Stacking-induced white-light and blue-light phosphorescence from purely organic radical materials[J]. Journal of Materials Chemistry, 2011, 21(46): 18520-18522.
[33] Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: Impact on human health[J]. Pharmacogn Reviews, 2010, 4(8): 118-126.
[34] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84.
[35] Abderrazak Y, Bhattacharyya A, Reiser O. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis[J]. Angewandte Chemie International Edition, 2021, 60(39): 21100-21115.
[36] Allen A R, Noten E A, Stephenson C R J. Aryl Transfer Strategies Mediated by Photoinduced Electron Transfer[J]. Chemcal Reviews, 2022, 122(2): 2695-2751.
[37] Chan A Y, Perry I B, Bissonnette N B, et al. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis[J]. Chemical Reviews, 2022, 122(2): 1485-1542.
[38] Saha D. Catalytic Enantioselective Radical Transformations Enabled by Visible Light[J]. Chemistry-An Asian Journal, 2020, 15(14): 2129-2152.
[39] Corbin D A, McCarthy B G, van de Lindt Z, et al. Radical Cations of Phenoxazine and Dihydrophenazine Photoredox Catalysts and Their Role as Deactivators in Organocatalyzed Atom Transfer Radical Polymerization[J]. Macromolecules, 2021, 54(10): 4726-4738.
[40] Sun M, Wang L, Zhao L, et al. Visible-Light Photoredox Catalyzed C−N Coupling of Quinoxaline-2(1H)-ones with Azoles without External Photosensitizer[J]. ChemCatChem, 2020, 12(20): 5261-5268.
[41] 徐磊,王方,陈凡,等. 可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展[J]. 有机化学,2022,42(1):1-15.
[42] Crisenza G E M, Mazzarella D, Melchiorre P. Synthetic Methods Driven by the Photoactivity of Electron Donor-Acceptor Complexes[J]. Journal of the American Chemical Society, 2020, 142(12): 5461-5476.
[43] Li T, Liang K, Tang J, et al. A photoexcited halogen-bonded EDA complex of the thiophenolate anion with iodobenzene for C(sp3)-H activation and thiolation[J]. Chemical Science, 2021, 12(47): 15655-15661.
[44] Yang Z, Liu Y, Cao K, et al. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes[J]. Beilstein Journal of Organic Chemistry, 2021, 17(771-799.
[45] Fodran P, Wallentin C-J. Harnessing Energy-Transfer in N-Centered Radical-Mediated Synthesis of Pyrrolidines[J]. European Journal of Organic Chemistry, 2020, 2020(22): 3213-3218.
[46] Schmid L, Glaser F, Schaer R, et al. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis[J]. Journal of the American Chemical Society, 2022, 144(2): 963-976.
[47] Strieth-Kalthoff F, Glorius F. Triplet Energy Transfer Photocatalysis: Unlocking the Next Level[J]. Chem, 2020, 6(8): 1888-1903.
[48] Doyle A B, Jaocbsen E N. Small-Molecule H-Bond Donors in Asymmetric Catalysis[J]. Chemcal Reviews, 2007, 107(12): 5713-5743.
[49] MacMillan D W C. The Advent and Development of Organocatalysis[J]. Nature, 2008, 455(7211): 304-308.
[50] Ahrendt K A, Borths C J, MacMillan D W C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction[J]. Journal of the American Chemical Society, 2000, 122(17): 4243-4244.
[51] List B, Lerner R A, Barbas III C L. Proline-Catalyzed Direct Asymmetric Aldol Reactions[J]. Journal of the American Chemical Society, 2000, 122(10): 2395-2396.
[52] Nicewicz D A, MacMillan D W C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes[J]. Science, 2008, 322(5898): 77-80.
[53] Ghosh I, Marzo L, Das A, et al. Visible Light Mediated Photoredox Catalytic Arylation Reactions[J]. Accounts of Chemical Research, 2016, 49(8): 1566-1577.
[54] Majek M, Jacobi von Wangelin A. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions[J]. Accounts of Chemical Research, 2016, 49(10): 2316-2327.
[55] Shang T Y, Lu L H, Cao Z, et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations[J]. Chemical Communications, 2019, 55(38): 5408-5419.
[56] Ghosh I, GhoshT., Bardagi J I, et al. Reduction of Aryl Halides by Consecutive Visible Light-Induced Electron Transfer Processes[J]. Science, 2014, 346(6210): 725-728.
[57] Alamsetti S K, Poonguzhali E, Ganapathy D, et al. Enantioselective Oxidative Coupling of 2-Naphthol Derivatives by Copper-(R)-1,1'-Binaphthyl-2,2'-diamine-TEMPO Catalyst[J]. Advanced Synthesis & Catalysis, 2013, 355(14-15): 2803-2808.
[58] Guo Q-X, Wu Z-J, Luo Z-B, et al. Highly Enantioselective Oxidative Couplings of 2-Naphthols Catalyzed by Chiral Bimetallic Oxovanadium Complexes with Either Oxygen or Air as Oxidant[J]. Journal of the American Chemical Society, 2007, 129(45): 13927-13938.
[59] Nakajima M, Miyoshi I, Kanayama K, et al. Enantioselective Synthesis of Binaphthol Derivatives by Oxidative Coupling of Naphthol Derivatives Catalyzed by Chiral Diamine-Copper Complexes[J]. The Journal of Organic Chemistry, 1999, 64(7): 2264-2271.
[60] Wang J, Zhao Y, Gao H, et al. Visible-Light-Mediated Dehydrogenative Cross-Coupling: Synthesis of Nonsymmetrical Atropisomeric Biaryls[J]. Asian Journal of Organic Chemistry, 2017, 6(10): 1402-1407.
[61] Zhao Y, Huang B, Yang C, et al. Photocatalytic Cross-Dehydrogenative Amination Reactions between Phenols and Diarylamines[J]. ACS Catalysis, 2017, 7(4): 2446-2451.
[62] He Z, Pulis A P, Procter D J. The Interrupted Pummerer Reaction in a Sulfoxide-Catalyzed Oxidative Coupling of 2-Naphthols[J]. Angewandte Chemie International Edition, 2019, 58(23): 7813-7817.
[63] Narute S, Parnes R, Toste F D, et al. Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes[J]. Journal of the American Chemical Society, 2016, 138(50): 16553-16560.
[64] Reiss H, Shalit H, Vershinin V, et al. Cobalt(II)[salen]-Catalyzed Selective Aerobic Oxidative Cross-Coupling between Electron-Rich Phenols and 2-Naphthols[J]. The Journal of Organic Chemistry, 2019, 84(12): 7950-7960.
[65] Tian J M, Wang A F, Yang J S, et al. Copper-Complex-Catalyzed Asymmetric Aerobic Oxidative Cross-Coupling of 2-Naphthols: Enantioselective Synthesis of 3,3'-Substituted C1-Symmetric BINOLs[J]. Angewandte Chemie International Edition, 2019, 58(32): 11023-11027.
[66] Hayashi H, Ueno T, Kim C, et al. Ruthenium-Catalyzed Cross-Selective Asymmetric Oxidative Coupling of Arenols[J]. Organic Letters, 2020, 22(4):1469-1474.
[67] Zhang J-W, Jiang F, Chen Y-H, et al. Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones[J]. Science China Chemistry, 2021, 64(9): 1515-1521.
[68] Kazlauskas R J. Resolution of Binaphthols and Spirobiindanols Using Cholesterol Esterase[J]. Journal of the American Chemical Society, 1989, 111(13): 4953–4959.
[69] Juarez-Hernandez M, Johnson D V, Holland H L, et al. Lipase-catalyzed stereoselective resolution and desymmetrization of binaphthols[J]. Tetrahedron: Asymmetry, 2003, 14(3): 289-291.
[70] Periasamy M, Venkatraman L, Sivakumar S, et al. A New, Convenient Method of Resolution of Racemic 1,1'-Bi-2-naphthol Using Boric Acid and (R)-(+)--Methylbenzylamine[J]. The Journal of Organic Chemistry, 1999, 64(20): 7643-7645.
[71] Li Z, Liang X, Wu F, et al. A convenient resolution method for 1,1'-bi-2-naphthol and 4,4'-dibromo-1,1'-spirobiindane-7,7'-diol with menthyl chloroformate in the presence of TBAB[J]. Tetrahedron: Asymmetry, 2004, 15(4): 665-669.
[72] Aoyama H, Tokunaga M, Kiyosu J, et al. Kinetic Resolution of Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls by Palladium-Catalyzed Alcoholysis[J]. Journal of the American Chemical Society, 2005, 127(30): 10474-10475.
[73] Lu S, Poh S B, Siau W Y, et al. Kinetic resolution of tertiary alcohols: highly enantioselective access to 3-hydroxy-3-substituted oxindoles[J]. Angewandte Chemie International Edition, 2013, 52(6): 1731-1734.
[74] Kuwano S, Harada S, Kang B, et al. Enhanced rate and selectivity by carboxylate salt as a basic cocatalyst in chiral N-heterocyclic carbene-catalyzed asymmetric acylation of secondary alcohols[J]. Journal of the American Chemical Society, 2013, 135(31): 11485-11488.
[75] Suzuki Y, Yamauchi K, Muramatsu K, et al. First example of chiral N-heterocyclic carbenes as catalysts for kinetic resolution[J]. Chemical Communications, 2004, 23: 2770-2771.
[76] Lu S, Poh S B, Zhao Y. Kinetic resolution of 1,1'-biaryl-2,2'-diols and amino alcohols through NHC-catalyzed atroposelective acylation[J]. Angewandte Chemie International Edition, 2014, 53(41): 11041-11045.
[77] Ma G, Deng J, Sibi M P. Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds[J]. Angewandte Chemie International Edition, 2014, 53(44): 11818-11821.
[78] Moustafa G A I, Oki Y, Akai S. Lipase-Catalyzed Dynamic Kinetic Resolution of C1- and C2-Symmetric Racemic Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls[J]. Angewandte Chemie International Edition, 2018, 57(32): 10278-10282.
[79] Jones B A, Balan T, Jolliffe J D, et al. Practical and Scalable Kinetic Resolution of BINOLs Mediated by a Chiral Counterion[J]. Angewandte Chemie International Edition, 2019, 58(14): 4596-4600.
[80] Smrcina M, Vyskocil S, Maca B, et al. Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine Derivatives. A Facile Synthesis of 2,2',3-Trisubstituted and 2,2',3,3'-Tetrasubstituted 1,1'-Binaphthyls[J]. The Journal of Organic Chemistry, 1994, 59(8): 2156-2163.
[81] Vyskocil S, Smrcina M, Lorenc M, et al. On the ‘Novel two-phase oxidative cross-coupling of the two-component molecular crystal of 2-naphthol and 2-naphthylamine[J]. Chemical Communications, 1998, 585-586.
[82] Qi L-W, Mao J-H, Zhang J, et al. Organocatalytic asymmetric arylation of indoles enabled by azo groups[J]. Nature Chemistry, 2018, 10(1): 58-64.
[83] Qi L-W, Li S, Xiang S-H, et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy[J]. Nature Catalysis, 2019, 2(4): 314-323.
[84] Ding W-Y, Yu P, An Q-J, et al. DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene[J]. Chem, 2020, 6(8): 2046-2059.
[85] Lu S, Ng S V H, Lovato K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation[J]. Nature Communications, 2019, 10(1): 3061.
[86] Shirakawa S, Wu X, Maruoka K. Kinetic resolution of axially chiral 2-amino-1,1'-biaryls by phase-transfer-catalyzed N-allylation[J]. Angewandte Chemie International Edition, 2013, 52(52): 14200-14203.
[87] Liu W, Jiang Q, Yang X. A Versatile Method for Kinetic Resolution of Protecting-Group-Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation[J]. Angewandte Chemie International Edition, 2020, 59(52): 23598-23602.
[88] Yuan H, Du Y, Liu F, et al. Tandem approach to NOBIN analogues from arylhydroxylamines and diaryliodonium salts via
[3,3]-sigmatropic rearrangement[J]. Chemical Communications, 2020, 56(59): 8226-8229.
[89] Zhang J W, Qi L W, Li S, et al. Direct Construction of NOBINs via Domino Arylation and Sigmatropic Rearrangement Reactions[J]. Chinese Journal of Chemistry, 2020, 38(12): 1503-1514.
[90] Zhang J W, Xiang S H, Li S, et al. Copper-Catalyzed Synthesis of Axially Chiral Biaryls with Diaryliodonium Salts as Arylation Reagents[J]. Molecules, 2021, 26(11).
[91] Wang M, Liu Y, Wang L, et al. Cascade Chan-Lam C−O Coupling/
[3,3]-Rearrangement of Arylhydroxylamines with Arylboronic Acids Toward NOBINAnalogues[J]. Advanced Synthesis & Catalysis, 2021, 363(6): 1733-1738.
[92] Hatano M, Toh K, Ishihara K. Enantioselective Aza-Friedel-Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral C1-Symmetric Bis(phosphoric Acid)[J]. Organic Letters, 2020, 22(24): 9614-9620.
[93] 杨丽,徐括喜,王晨娟,等. 基于2,2'-联萘酚衍生物的荧光化学传感器对手性异构体选择性识别研究进展[J]. 有机化学,2013,33(12):2496-2503.
[94] Chen Y H, Cheng D J, Zhang J, et al. Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols[J]. Journal of the American Chemical Society, 2015, 137(48): 15062-15065.
[95] Moliterno M, Cari R, Puglisi A, et al. Quinine-Catalyzed Asymmetric Synthesis of 2,2'-Binaphthol-Type Biaryls[J]. Angewandte Chemie International Edition, 2016, 55(22): 6525-6529.
[96] Coombs G, Sak M H, Miller S J. Peptide-Catalyzed Fragment Couplings that Form Axially Chiral Non-C2-Symmetric Biaryls[J]. Angewandte Chemie International Edition, 2020, 59(7): 2875-2880.
[97] Wang J Z, Zhou J, Xu C, et al. Symmetry in Cascade Chirality-Transfer Processes: A Catalytic Atroposelective Direct Arylation Approach to BINOL Derivatives[J]. Journal of the American Chemical Society, 2016, 138(16): 5202-5205.
[98] Cheng D J, Shao Y D. Advances in the Catalytic Asymmetric Synthesis of Atropisomeric Hexatomic N‐Heterobiaryls[J]. Advanced Synthesis & Catalysis, 2020, 362(15): 3081-3099.
[99] 张硕,廖港,史炳锋. 含有五元杂芳结构的联芳轴手性化合物的对映选择性合成[J]. 有机化学,2019,39(6):1522-1528.
[100] Tan G, Schrader M L, Daniliuc C, et al. C-H Activation Based Copper-Catalyzed One-Shot Synthesis of N,O-Bidentate Organic Difluoroboron Complexes[J]. Angewandte Chemie International Edition, 2020, 59(48): 21541-21545.
[101] Lim A D, Codelli J A, Reisman S E. Catalytic Asymmetric Synthesis of Highly Substituted Pyrrolizidines[J]. Chemical Science, 2012, 4(2): 650-654.
[102] Pais V F, Ramirez-Lopez P, Romero-Arenas A, et al. Red-Emitting Tetracoordinate Organoboron Chelates: Synthesis, Photophysical Properties, and Fluorescence Microscopy[J]. The Journal of Organic Chemistry, 2016, 81(20): 9605-9611.
[103] Czarnocki Z, Pomarański P. Arylpyridines: A Review from Selective Synthesis to Atropisomerism[J]. Synthesis, 2018, 51(03): 587-611.
[104] Glaser F, Kerzig C, Wenger O S. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods[J]. Angewandte Chemie International Edition, 2020, 59(26): 10266-10284.
[105] Yan Y, Feng P, Zheng Q Z, et al. PdCl2 and N-hydroxyphthalimide co-catalyzed C(sp2)-H hydroxylation by dioxygen activation[J]. Angewandte ChemieInternational Edition, 2013, 52(22): 5827-5831.
[106] Das P, Saha D, Saha D, et al. Aerobic Direct C(sp2)-H Hydroxylation of 2-Arylpyridines by Palladium Catalysis Induced with Aldehyde Auto-Oxidation[J]. ACS Catalysis, 2016, 6(9): 6050-6054.
[107] Shah S S, Paul A, Bera M, et al. Metallaphotoredox-Mediated Csp2-H Hydroxylation of Arenes under Aerobic Conditions[J]. Organic Letters, 2018, 20(18): 5533-5536.
[108] Quinonero O, Jean M, Vanthuyne N, et al. Combining Organocatalysis with Central-to-Axial Chirality Conversion: Atroposelective Hantzsch-Type Synthesis of 4-Arylpyridines[J]. Angewandte Chemie International Edition, 2016, 55(4): 1401-1405.
[109] Kashima K, Teraoka K, Uekusa H, et al. Rhodium-Catalyzed Atroposelective
[2+2+2] Cycloaddition of Ortho-Substituted Phenyl Diynes with Nitriles: Effect of Ortho Substituents on Regio- and Enantioselectivity[J]. Organic Letters, 2016, 18(9): 2170-2173.
[110] Shao Y-D, Dong M-M, Wang Y-A, et al. Organocatalytic Atroposelective Friedländer Quinoline Heteroannulation[J]. Organic Letters, 2019, 21(12): 4831-4836.
[111] Wan J, Liu H, Lan Y, et al. Catalytic Asymmetric Synthesis of Atropisomeric Quinolines through the Friedländer Reaction[J]. Synlett, 2019, 30(19): 2198-2202.
[112] Jiang P Y, Fan K F, Li S, et al. Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives[J]. Nature Communications, 2021, 12(1): 2384.
[113] Zhang L, Shen J, Wu S, et al. Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes[J]. Angewandte Chemie International Edition, 2020, 59(51): 23077-23082.
[114] Kumar Hota S, Jinan D, Prakash Panda S, et al. Organophotoredox-Catalyzed Late-Stage Functionalization of Heterocycles[J]. Asian Journal of Organic Chemistry, 2021, 10(8): 1848-1860.
[115] Lu F-D, He G-F, Lu L-Q, et al. Metallaphotoredox catalysis for multicomponent coupling reactions[J]. Green Chemistry, 2021, 23(15): 5379-5393.
[116] Hari D P, Schroll P, König B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts[J]. Journal of the American Chemical Society, 2012, 134(6): 2958-2961.
[117] Yang S, Chen M, Tang P. Visible-Light Photoredox-Catalyzed and Copper-Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates[J]. Angewandte Chemie International Edition, 2019, 58(23): 7840-7844.
[118] Zhang S, Tang Z, Bao W, et al. Perylenequinonoid-catalyzed photoredox activation for the direct arylation of (het)arenes with sunlight[J]. Organic &Biomolecular Chemistry, 2019, 17(17): 4364-4369.
[119] Ouyang X H, Cheng J, Li J H. 1,2-Diarylation of alkenes with aryldiazonium salts and arenes enabled by visible light photoredox catalysis[J]. Chemical Communications, 2018, 54(63): 8745-8748.
[120] Wang D, Cheng C, Wu Q, et al. Visible-Light Excitation of BODIPYs Enables Self-Promoted Radical Arylation at Their 3,5-Positions with Diazonium Salts[J]. Organic Letters, 2019, 21(13): 5121-5125.
[121] Hari D P, Hering T, König B. Visible Light Photocatalytic Synthesis of Benzothiophenes[J]. Organic Letters, 2012, 14(20): 5334-5337.
[122] Xiao J, Xue D, Liu Y-X, et al. Room-Temperature Arylation of Arenes and Heteroarenes with Diaryliodonium Salts by Photoredox Catalysis[J]. Synlett, 2013, 24(04): 507-513.
[123] Tobisu M, Furukawa T, Chatani N. Visible Light-mediated Direct Arylation of Arenes and Heteroarenes Using Diaryliodonium Salts in the Presence and Absence of a Photocatalyst[J]. Chemistry Letters, 2013, 42(10): 1203-1205.
[124] Baralle A, Fensterbank L, Goddard J P, et al. Aryl radical formation by copper(I) photocatalyzed reduction of diaryliodonium salts: NMR evidence for a Cu(II)/Cu(I) mechanism[J]. Chemistry-A European Journal, 2013, 19(33): 10809-10813.
[125] Fumagalli G, Boyd S, Greaney M F. Oxyarylation and Aminoarylation of Styrenes Using Photoredox Catalysis[J]. Organic Letters, 2013, 15(17): 4398-4401.
[126] Pagire S K, Hossain A, Reiser O. Temperature Controlled Selective C-S or C-C Bond Formation: Photocatalytic Sulfonylation versus Arylation of Unactivated Heterocycles Utilizing Aryl Sulfonyl Chlorides[J]. Organic Letters, 2018, 20(3): 648-651.
[127] Deng G B, Wang Z Q, Xia J D, et al. Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis[J]. Angewandte Chemie International Edition, 2013, 52(5): 1535-1538.
[128] Gu L, Jin C, Liu J, et al. Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines[J]. Chemical Communications, 2014, 50(35): 4643-4645.
[129] Nguyen J D, D'Amato E M, Narayanam J M, et al. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions[J]. Nature Chemistry, 2012, 4(10): 854-859.
[130] Meyer A U, Slanina T, Yao C-J, et al. Metal-Free Perfluoroarylation by Visible Light Photoredox Catalysis[J]. ACS Catalysis, 2015, 6(1): 369-375.
[131] Senaweera S, Weaver J D. Dual C-F, C-H Functionalization via Photocatalysis: Access to Multifluorinated Biaryls[J]. Journal of the American Chemical Society,2016, 138(8): 2520-2523.
[132] Dewanji A, Bulow R F, Rueping M. Photoredox/Nickel Dual-Catalyzed Reductive Cross Coupling of Aryl Halides Using an Organic Reducing Agent[J]. Organic Letters, 2020, 22(4): 1611-1617.
[133] Lee D S, Kim C S, Iqbal N, et al. Organophotocatalytic Arene Functionalization: C-C and C-B Bond Formation[J]. Organic Letters, 2019, 21(24): 9950-9953.
[134] Boyington A J, Seath C P, Zearfoss A M, et al. Catalytic Strategy for Regioselective Arylethylamine Synthesis[J]. Journal of the American Chemical Society, 2019, 141(9): 4147-4153.
[135] Liang K, Liu Q, Shen L, et al. Intermolecular oxyarylation of olefins with aryl halides and TEMPOH catalyzed by the phenolate anion under visible light[J]. Chemical Science, 2020, 11(27): 6996-7002.
[136] Patra T, Mukherjee S, Ma J, et al. Visible-Light-Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions[J]. Angewandte Chemie International Edition, 2019, 58(31): 10514-10520.
[137] Berger F, Plutschack M B, Riegger J, et al. Site-selective and versatile aromatic C-H functionalization by thianthrenation[J]. Nature, 2019, 567(7747): 223-228.
[138] Li J, Chen J, Sang R, et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination[J]. Nature Chemistry, 2020, 12(1): 56-62.
[139] Kim H, Kim H, Lambert T H, et al. Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials[J]. Journal of the American Chemical Society, 2020, 142(5): 2087-2092.
[140] Cowper N G W, Chernowsky C P, Williams O P, et al. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling[J]. Journal of the American Chemical Society, 2020, 142(5): 2093-2099.
[141] Proctor R S J, Phipps R J. Recent Advances in Minisci-Type Reactions[J]. Angewandte Chemie International Edition, 2019, 58(39): 13666-13699.
[142] Xue D, Jia Z H, Zhao C J, et al. Direct arylation of N-heteroarenes with aryldiazonium salts by photoredox catalysis in water[J]. Chemistry-A European Journal, 2014, 20(10): 2960-2965.
[143] Fabry D C, Ho Y A, Zapf R, et al. Blue light mediated C–H arylation of heteroarenes using TiO2 as an immobilized photocatalyst in a continuous-flow microreactor[J]. Green Chemistry, 2017, 19(8): 1911-1918.
[144] Bartolomeu A d A, Silva R C, Brocksom T J, et al. Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach[J]. The Journal of Organic Chemistry, 2019, 84(16): 10459-10471.
[145] Candish L, Freitag M, Gensch T, et al. Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals[J]. Chemical Science, 2017, 8(5): 3618-3622.
[146] Hagui W, Soule J F. Synthesis of 2-Arylpyridines and 2-Arylbipyridines via Photoredox-Induced Meerwein Arylation with in Situ Diazotization of Anilines[J]. The Journal of Organic Chemistry, 2020, 85(5): 3655-3663.
[147] Fujiwara Y, Domingo V, Seiple I B, et al. Practical C-H functionalization of quinones with boronic acids[J]. Journal of the American Chemical Society, 2011, 133(10): 3292-3295.
[148] Tajuddeen N, Bringmann G. N,C-Coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products[J]. Natural Product Reports, 2021, 38(12): 2154-2186.
[149] Carmona J A, Rodriguez-Franco C, Fernandez R, et al. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies[J]. Chemical Society Reviews, 2021, 50(5): 2968-2983.
[150] Chen Y H, Li H H, Zhang X, et al. Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl-p-Quinones: Platform Molecules for Diversity-Oriented Synthesis of Biaryldiols[J]. Angewandte Chemie International Edition, 2020, 59(28): 11374-11378.
[151] Mal D, Chakraborty S. C-Glycosylation of Substituted β-Naphthols with Trichloroacetimidate Glycosyl Donors[J]. Synthesis, 2018, 50(07): 1560-1568.
[152] Majumdar K C, Mondal S, Ghosh D. Synthesis of tricyclic and tetracyclic sultones by Pd-catalyzed intramolecular cyclization[J]. Tetrahedron Letters, 2009, 50(33): 4781-4784.
[153] Chen Y H, Qi L W, Fang F, et al. Organocatalytic Atroposelective Arylation of 2-Naphthylamines as a Practical Approach to Axially Chiral Biaryl Amino Alcohols[J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[154] Ting S I, Garakyaraghi S, Taliaferro C M, et al. 3d-d Excited States of Ni(II) Complexes Relevant to Photoredox Catalysis: Spectroscopic Identification and Mechanistic Implications[J]. Journal of the American Chemical Society, 2020, 142(12): 5800-5810.
[155] He X L, Wang C, Wen Y W, et al. Recent Advances in Catalytic Atroposelective Construction of Pentatomic Heterobiaryl Scaffolds[J]. ChemCatChem, 2021, 13(16): 3547-3564.
[156] Nguyen T T. Traceless point-to-axial chirality exchange in the atropselective synthesis of biaryls/heterobiaryls[J]. Organic & Biomolecular Chemistry, 2019, 17(29): 6952-6963.
[157] 澍 陈,任朝丽,田晓雨,等. 吡啶联噁唑酰胺类化合物的设计、合成及杀菌活性[J]. 有机化学,2021,41(2):842-848.
[158] Candish L, Collins K D, Cook G C, et al. Photocatalysis in the Life ScienceIndustry[J]. Chemical Reviews, 2022, 122(2): 2907-2980.
[159] 董建洋,刘玉秀,汪清民. 可见光催化的Minisci 反应研究进展[J]. 有机化学, 2021,41(10):3771-3791.
[160] Seath C P, Vogt D B, Xu Z, et al. Radical Hydroarylation of Functionalized Olefins and Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions[J]. Journal of the American Chemical Society, 2018, 140(45): 15525-15534.
[161] Zhu D-L, Jiang S, Young D J, et al. Visible-light-driven C(sp2)–H arylation of phenols with arylbromides enabled by electron donor–acceptor excitation[J]. Chemical Communications, 2022, 58(22): 3637-3640.
[162] Filippini G, Nappi M, Melchiorre P. Photochemical direct perfluoroalkylation of phenols[J]. Tetrahedron, 2015, 71(26): 4535-4542.
[163] Guo S-Y, Yang F, Song T-T, et al. Photo-induced catalytic halopyridylation of alkenes[J]. Nature Communications, 2021, 12(1): 6538.
修改评论