中文版 | English
题名

轴手性联芳基化合物的芳基化构建策略研究

其他题名
CONSTRUCTION OF AXIALLY CHIRAL BIARYL COMPOUNDS VIA ARYLATION STRATEGY
姓名
姓名拼音
LI Henghui
学号
11849567
学位类型
博士
学位专业
0817 化学工程与技术
学科门类/专业学位类别
08 工学
导师
谭斌
导师单位
化学系
论文答辩日期
2022-05-19
论文提交日期
2022-07-08
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

    轴手性联芳基骨架广泛存在于具有重要生物活性的天然产物以及药物分子中,它们作为核心载体被用于构建一系列不对称催化领域的优势配体与催化剂。其中,基于联芳基骨架的非C2对称性联芳基二酚的合成方法报道相对较少,自偶联反应的存在使得现有的方法具有明显局限性。另一方面,含氮杂环联芳烃化合物主要是通过过渡金属催化的交叉偶联反应和光催化的芳基自由基对吡啶的加成反应合成,但是反应条件苛刻、氮杂环与金属配位造成催化剂失活、吡啶的区域选择性等问题导致反应效率较低。因此,开发高效、高选择性的方法用于非C2对称性联芳基二酚和含氮杂环联芳烃化合物的合成具有较高的学术研究价值和广阔的应用前景。光氧化还原催化作为一种可以在温和条件下产生芳基自由基的方法,可实现丰富多样的芳基化过程。本论文的研究内容是借助有机小分子催化或光氧化还原催化的手段,通过芳基化策略实现了多种联芳基骨架的构筑,主要内容包括:
    研究了利用手性磷酸催化对苯醌与2-萘酚的芳基化反应与“一锅法”氧化,实现轴手性芳基醌化合物的高效、高对映选择性合成(产率最高可达75%,ee最高可达96%)。以该类化合物作为平台分子,可以与多种类型的亲核试剂发生官能团化过程,包括芳基硫酚、二芳基氧膦、吲哚、-酮酯,实现了结构复杂多样的非C2对称性联芳基二酚的高效合成,丰富了该类轴手性化合物的分子库。值得一提的是,在该转化过程中,芳基醌的对映选择性均能得到保持。以吲哚为亲核试剂,得到的产物可被再次氧化得到芳基醌化合物,有利于进一步进行后期结构修饰。此方法不仅构建了新颖的轴手性芳基醌骨架,也为非C2对称性联芳基二酚的合成提供了一条新的途径。
    研究了在光氧化还原催化体系中,以1-溴-2-萘酚作为芳基自由基前体,通过芳基化过程实现了C1对称性1,1’-联萘-2,2’-二酚(BINOL)的高效合成,产率最高可达80%。与已报道的合成方法相比,该方法较好地改善了底物普适性和官能团兼容性。该策略可以有效地避免自偶联副反应,对于带有不同取代基的两类底物的光催化芳基化反应也均可顺利进行。
    研究了该光催化体系所展现的对2-萘胺类底物的很好的兼容性,可在无保护基或导向基的条件下一步构建2-氨基-2’-羟基-1,1’-联萘(NOBIN)骨架,产率最高达64%。光催化剂负载量降至0.1 mol%的条件下也可以高效实现C1对称性BINOL的克级规模合成(产率75%)。之后,设计了自由基捕获、荧光淬灭、循环伏安等一系列机理验证实验,并根据实验结果提出了合理的反应机理,即芳基自由基与2-萘酚加成后再经历单电子转移与芳构化过程得到目标产物。在此基础上,通过氢键催化、相转移催化、过渡金属催化等策略进行了光催化不对称合成C1对称性BINOL的初步尝试。
    研究了在光催化下通过溴代氮杂芳烃和苯酚的交叉偶联反应,实现含氮杂环联芳烃化合物的合成。利用质子耦合电子转移策略,在溴代氮杂芳烃质子化过程中会同时发生底物与光催化剂的单电子转移过程,得到的氮杂芳基自由基可以与体系中的苯酚类底物发生交叉偶联反应,产率最高可达83%。苯酚类底物同时作为芳基化试剂与质子供体参与反应。该方法具有良好的官能团兼容性,例如卤素、酯基、氰基、三氟甲基、烷基、烷氧基等,并且原料简单易得、反应操作简单。对于不含酚羟基的芳烃类底物,通过引入其它可实现溴代氮杂芳烃质子化的质子给体,例如以六氟异丙醇作为溶剂,同样能够实现含氮杂环联芳烃化合物的高效合成(产率最高可达91%)。

其他摘要

Axially chiral biaryl skeletons are widely found in bioactive natural products and drug candidates. In asymmetric catalysis, ligands and catalysts built on chiral biaryl cores find wide applications across many mechanistically distinct transformations. Within this compound class, there are relatively few reports on non-C2-symmetric biaryldiols. Their restrictios arise mainly from the prevailing homo-coupling reactivity in aryl-aryl coupling reactions. On the other hand, the preparation of N-heterobiaryls mainly relies on transition metal-catalyzed cross-coupling reactions and photocatalytic addition of aryl radicals to pyridines. However, the efficiency of these schemes could be hampered by harsh reaction conditions required, deactivation of metal catalyst due to competing coordination of N-heterocycles, as well as regioselectivity issue in radical addition to pyridines. Therefore, the development of highly efficient and selective methods for the synthesis of non-C2-symmetric biaryldiols and N-heterobiaryls is of high research value and practical utility. Photoredox catalysis-enabled diverse arylation reactions with aryl radicals under mild reaction conditions. The research of this thesis realizes the construction of multiple classes of biaryls through arylation process promoted by organocatalysis or photoredox catalysis. The main contents include:

Highly efficient and enantioselective synthesis of axially chiral aryl-p-quinones has been achieved through arylation of benzoquinones with 2-naphthols via chiral phosphoric acid (CPA) catalysis and “one-pot” oxidation (yield up to 75% and ee up to 96%). Notably, aryl-p-quinones represent one class of platform molecules: they were amenable to downstream functionalization by myriad nucleophiles including aryl thiophenols, diarylphosphine oxides, indoles and b-keto esters with almost perfect preservation of enantioselectivities. This method allows rapid population of related chemical space with highly functionalized and structurally diverse axially chiral biaryldiols. The application of indole nucleophiles would regenerate the aryl-p-quinones after a re-oxidation event, thus enabling another follow-up synthetic elaboration. Overall, this method provides novel skeletons of axially chiral aryl-p-quinones and offers new pathway for the synthesis of non-C2-symmetric biaryldiols.

With 1-bromo-2-naphthols as aryl radical precursors, the highly efficient synthesis of C1-symmetric 1,1'-bi-2-naphthol (BINOL) has been realized via arylation pathway enabled by photoredox catalysis with up to 80% yield. Compared to previous methods, this strategy could effectively improve the substrate scope and exhibited good tolerance of functional groups. The homo-coupling side reactions were successfully circumvented in this photocatalytic system. The photocatalytic arylation process worked smoothly for both coupling partners that bear various functionalities.

2-Naphthylamines are another class of compatible coupling partners under this photocatalytic system, hence establishing the protecting- or directing group-free synthesis of 2-amino-2'-hydroxy-1,1'-binaphthyls (NOBINs) in one step with up to 64% yield. Highly efficient synthesis of C1-symmetric BINOLs on gram-scale could be achieved with photocatalyst loading as low as 0.1 mol% (75% yield). A plausible mechanism was proposed on the basis of a series of mechanistic experiments, including radical trapping, luminescent quenching and cyclic voltammetry experiments, in which the product can be obtained through the aryl radical addition to 2-naphthols, followed by single electron transfer and rearomatization. This proposed mechanism served as basis for the preliminary studies conducted to develop photocatalytic asymmetric synthesis of C1-symmetric BINOLs by means of H-bonding catalysis, phase transfer catalysis and transition metal catalysis.

The photocatalysis also underpinned the cross-coupling reactions of bromoazaarenes with phenols for the synthesis of N-heterobiaryls. In this proton-coupled electron transfer strategy, protonation of bromoazaarenes and the coupled single electron transfer process with photocatalyst would release the azaarene radicals that undergo cross-coupling with phenols in up to 83% yield. The phenol derivatives could be both substrates and proton donors in this transformation. A diverse range of functional groups, such as halogen, ester, cyano, trifluoromethyl, alkyl, alkoxy and so on were found compatible with the established conditions. The operational simplicity and commercial availability of all substrates greatly broaden the appeal of this reaction. For arenes without phenolic hydroxyl group, the construction of N-heterobiaryls could be accomplished by introducing other proton donors. To this end, hexafluoroisopropanol applied as solvent also fulfilled the protonation of bromoazaarenes, generating the corresponding N-heterobiaryls in up to 91% yield.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Bringmann G, Gulder T, Gulder T A M, et al. Atroposelective Total Synthesis of Axially Chiral Biaryl Natural Products[J]. Chemcal Reviews, 2005, 111(2): 563-639.
[2] Bringmann G, Menche D. Stereoselective Total Synthesis of Axially Chiral Natural Products via Biaryl Lactones[J]. Accounts of Chemical Research, 2001, 34(8): 615-624.
[3] Hughes C C, Kauffman C A, Jensen P R, et al. Structures, reactivities, and antibiotic properties of the marinopyrroles A-F[J]. The Journal of Organic Chemistry, 2010, 75(10): 3240-3250.
[4] Baudoin O. The Asymmetric Suzuki Coupling Route to Axially Chiral Biaryls[J]. European Journal of Organic Chemistry, 2005, 2005(20): 4223-4229.
[5] Renzi P. Organocatalytic synthesis of axially chiral atropisomers[J]. Organic & Biomolecular Chemistry, 2017, 15(21): 4506-4516.
[6] Yamanaka K, Ryan K S, Gulder T A, et al. Flavoenzyme-catalyzed atropo-selective N,C-bipyrrole homocoupling in marinopyrrole biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(30): 12434-12437.
[7] Collins B S L, Kistemaker J C M, Otten E, et al. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle[J]. Nature Chemistry, 2016, 8(9): 860-866.
[8] Sapotta M, Spenst P, Saha-Möller C R, et al. Guest-mediated chirality transfer in the host–guest complexes of an atropisomeric perylene bisimide cyclophane host[J]. Organic Chemistry Frontiers, 2019, 6(7): 892-899.
[9] Takaishi K, Yasui M, Ema T. Binaphthyl-Bipyridyl Cyclic Dyads as a Chiroptical Switch[J]. Journal of the American Chemical Society, 2018, 140(16): 5334-5338.
[10] Cheng J K, Xiang S H, Li S, et al. Recent Advances in Catalytic Asymmetric Construction of Atropisomers[J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[11] Li T Z, Liu S J, Tan W, et al. Catalytic Asymmetric Construction of Axially Chiral Indole-Based Frameworks: An Emerging Area[J]. Chemistry-A European Journal, 2020, 26(68): 15779-15792.
[12] Wang Y B, Tan B. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis[J]. Accounts of Chemical Research, 2018, 51(2): 534-547.
[13] Miyaura N, Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J]. Chemical Reviews, 1995, 95(7): 2457-2483.
[14] Miyaura N, Yanagi T, Suzuki A. The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases[J]. Synthetic Communications, 1981, 11(7): 513-519.
[15] Negishi E, King A O, Okukado N. Selective Carbon-Carbon Bond Formation via Transition Metal Catalysis. 3. A Highly Selective Synthesis of Unsymmetrical Biaryls and Diarylmethanes by the Nickel- or Palladium-Catalyzed Reaction of Aryl- and Benzylzinc Derivatives with Aryl Halides[J]. The Journal of Organic Chemistry, 1977, 42(10): 1821-1823.
[16] Hatakeyama T, Hashimoto S, Ishizuka K, et al. Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides[J]. Journal of the American Chemical Society, 2009, 131(33): 11949-11963.
[17] Wowk V, Rousseau L, Lefèvre G. Importance of Two-Electron Processes in Fe-Catalyzed Aryl-(hetero)aryl Cross-Couplings: Evidence of Fe0/FeII Couple Implication[J]. Organometallics, 2021, 40(19): 3253-3266.
[18] Xu L C, Liu K M, Duan X F. Iron-Catalyzed Room Temperature Cross-Couplings of Bromophenols with Aryl Grignard Reagents[J]. Advanced Synthesis & Catalysis, 2019, 361(23): 5421-5427.
[19] Li B J, Li Y Z, Lu X Y, et al. Cross-coupling of aryl/alkenyl pivalates with organozinc reagents through nickel-catalyzed C-O bond activation under mild reaction conditions[J]. Angewandte Chemie International Edition, 2008, 47(52): 10124-10127.
[20] Yu D G, Shi Z J. Mutual activation: Suzuki-Miyaura coupling through direct cleavage of the sp2 C-O bond of naphtholate[J]. Angewandte Chemie International Edition, 2011, 50(31): 7097-7100.
[21] Zhang Y F, Shi Z J. Upgrading Cross-Coupling Reactions for Biaryl Syntheses[J]. Accounts of Chemical Research, 2019, 52(1): 161-169.
[22] Kuzmina O M, Steib A K, Markiewicz J T, et al. Ligand-accelerated iron- and cobalt-catalyzed cross-coupling reactions between N-heteroaryl halides and aryl magnesium reagents[J]. Angewandte Chemie International Edition, 2013, 52(18): 4945-4949.
[23] Punji B, Song W, Shevchenko G A, et al. Cobalt-catalyzed C-H bond functionalizations with aryl and alkyl chlorides[J]. Chemistry-A European Journal, 2013, 19(32): 10605-10610.
[24] Tailor S B, Manzotti M, Smith G J, et al. Cobalt-Catalyzed Coupling of Aryl Chlorides with Aryl Boron Esters Activated by Alkoxides[J]. ACS Catalysis, 2021, 11(7): 3856-3866.
[25] Hull K L, Lanni E L, Sanford M S. Highly Regioselective Catalytic Oxidative Coupling Reactions: Synthetic and Mechanistic Investigations[J]. Journal of the American Chemical Society, 2006, 128(43): 14047-14049.
[26] Wei Y, Su W. Pd(OAc)2-Catalyzed Oxidative C-H/C-H Cross-Coupling of Electron-Deficient Polyfluoroarenes with Simple Arenes[J]. Journal of theAmerican Chemical Society, 2010, 132(46): 16377-16379.
[27] Li B J, Tian S L, Fang Z, et al. Multiple C-H activations to construct biologically active molecules in a process completely free of organohalogen and organometallic components[J]. Angewandte Chemie International Edition, 2008, 47(6): 1115-1118.
[28] Chang L, An Q, Duan L, et al. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis[J]. Chemcal Reviews, 2022, 122(2): 2429-2486.
[29] Heinrich M R, Radicals in Synthesis III, Vol. 320, Springer, Berlin, 2011.
[30] Studer A, Curran D P. Catalysis of Radical Reactions: A Radical Chemistry Perspective[J]. Angewandte Chemie International Edition, 2016, 55(1): 58-102.
[31] Li T, Tan G, Shao D, et al. Magnetic Bistability in a Discrete Organic Radical[J]. Journal of the American Chemical Society, 2016, 138(32): 10092-10095.
[32] Yong G-P, Zhang Y-M, She W-L, et al. Stacking-induced white-light and blue-light phosphorescence from purely organic radical materials[J]. Journal of Materials Chemistry, 2011, 21(46): 18520-18522.
[33] Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: Impact on human health[J]. Pharmacogn Reviews, 2010, 4(8): 118-126.
[34] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84.
[35] Abderrazak Y, Bhattacharyya A, Reiser O. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis[J]. Angewandte Chemie International Edition, 2021, 60(39): 21100-21115.
[36] Allen A R, Noten E A, Stephenson C R J. Aryl Transfer Strategies Mediated by Photoinduced Electron Transfer[J]. Chemcal Reviews, 2022, 122(2): 2695-2751.
[37] Chan A Y, Perry I B, Bissonnette N B, et al. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis[J]. Chemical Reviews, 2022, 122(2): 1485-1542.
[38] Saha D. Catalytic Enantioselective Radical Transformations Enabled by Visible Light[J]. Chemistry-An Asian Journal, 2020, 15(14): 2129-2152.
[39] Corbin D A, McCarthy B G, van de Lindt Z, et al. Radical Cations of Phenoxazine and Dihydrophenazine Photoredox Catalysts and Their Role as Deactivators in Organocatalyzed Atom Transfer Radical Polymerization[J]. Macromolecules, 2021, 54(10): 4726-4738.
[40] Sun M, Wang L, Zhao L, et al. Visible-Light Photoredox Catalyzed C−N Coupling of Quinoxaline-2(1H)-ones with Azoles without External Photosensitizer[J]. ChemCatChem, 2020, 12(20): 5261-5268.
[41] 徐磊,王方,陈凡,等. 可见光/镍协同催化烯烃和炔烃双官能团化反应研究进展[J]. 有机化学,2022,42(1):1-15.
[42] Crisenza G E M, Mazzarella D, Melchiorre P. Synthetic Methods Driven by the Photoactivity of Electron Donor-Acceptor Complexes[J]. Journal of the American Chemical Society, 2020, 142(12): 5461-5476.
[43] Li T, Liang K, Tang J, et al. A photoexcited halogen-bonded EDA complex of the thiophenolate anion with iodobenzene for C(sp3)-H activation and thiolation[J]. Chemical Science, 2021, 12(47): 15655-15661.
[44] Yang Z, Liu Y, Cao K, et al. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes[J]. Beilstein Journal of Organic Chemistry, 2021, 17(771-799.
[45] Fodran P, Wallentin C-J. Harnessing Energy-Transfer in N-Centered Radical-Mediated Synthesis of Pyrrolidines[J]. European Journal of Organic Chemistry, 2020, 2020(22): 3213-3218.
[46] Schmid L, Glaser F, Schaer R, et al. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis[J]. Journal of the American Chemical Society, 2022, 144(2): 963-976.
[47] Strieth-Kalthoff F, Glorius F. Triplet Energy Transfer Photocatalysis: Unlocking the Next Level[J]. Chem, 2020, 6(8): 1888-1903.
[48] Doyle A B, Jaocbsen E N. Small-Molecule H-Bond Donors in Asymmetric Catalysis[J]. Chemcal Reviews, 2007, 107(12): 5713-5743.
[49] MacMillan D W C. The Advent and Development of Organocatalysis[J]. Nature, 2008, 455(7211): 304-308.
[50] Ahrendt K A, Borths C J, MacMillan D W C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction[J]. Journal of the American Chemical Society, 2000, 122(17): 4243-4244.
[51] List B, Lerner R A, Barbas III C L. Proline-Catalyzed Direct Asymmetric Aldol Reactions[J]. Journal of the American Chemical Society, 2000, 122(10): 2395-2396.
[52] Nicewicz D A, MacMillan D W C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes[J]. Science, 2008, 322(5898): 77-80.
[53] Ghosh I, Marzo L, Das A, et al. Visible Light Mediated Photoredox Catalytic Arylation Reactions[J]. Accounts of Chemical Research, 2016, 49(8): 1566-1577.
[54] Majek M, Jacobi von Wangelin A. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions[J]. Accounts of Chemical Research, 2016, 49(10): 2316-2327.
[55] Shang T Y, Lu L H, Cao Z, et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations[J]. Chemical Communications, 2019, 55(38): 5408-5419.
[56] Ghosh I, GhoshT., Bardagi J I, et al. Reduction of Aryl Halides by Consecutive Visible Light-Induced Electron Transfer Processes[J]. Science, 2014, 346(6210): 725-728.
[57] Alamsetti S K, Poonguzhali E, Ganapathy D, et al. Enantioselective Oxidative Coupling of 2-Naphthol Derivatives by Copper-(R)-1,1'-Binaphthyl-2,2'-diamine-TEMPO Catalyst[J]. Advanced Synthesis & Catalysis, 2013, 355(14-15): 2803-2808.
[58] Guo Q-X, Wu Z-J, Luo Z-B, et al. Highly Enantioselective Oxidative Couplings of 2-Naphthols Catalyzed by Chiral Bimetallic Oxovanadium Complexes with Either Oxygen or Air as Oxidant[J]. Journal of the American Chemical Society, 2007, 129(45): 13927-13938.
[59] Nakajima M, Miyoshi I, Kanayama K, et al. Enantioselective Synthesis of Binaphthol Derivatives by Oxidative Coupling of Naphthol Derivatives Catalyzed by Chiral Diamine-Copper Complexes[J]. The Journal of Organic Chemistry, 1999, 64(7): 2264-2271.
[60] Wang J, Zhao Y, Gao H, et al. Visible-Light-Mediated Dehydrogenative Cross-Coupling: Synthesis of Nonsymmetrical Atropisomeric Biaryls[J]. Asian Journal of Organic Chemistry, 2017, 6(10): 1402-1407.
[61] Zhao Y, Huang B, Yang C, et al. Photocatalytic Cross-Dehydrogenative Amination Reactions between Phenols and Diarylamines[J]. ACS Catalysis, 2017, 7(4): 2446-2451.
[62] He Z, Pulis A P, Procter D J. The Interrupted Pummerer Reaction in a Sulfoxide-Catalyzed Oxidative Coupling of 2-Naphthols[J]. Angewandte Chemie International Edition, 2019, 58(23): 7813-7817.
[63] Narute S, Parnes R, Toste F D, et al. Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes[J]. Journal of the American Chemical Society, 2016, 138(50): 16553-16560.
[64] Reiss H, Shalit H, Vershinin V, et al. Cobalt(II)[salen]-Catalyzed Selective Aerobic Oxidative Cross-Coupling between Electron-Rich Phenols and 2-Naphthols[J]. The Journal of Organic Chemistry, 2019, 84(12): 7950-7960.
[65] Tian J M, Wang A F, Yang J S, et al. Copper-Complex-Catalyzed Asymmetric Aerobic Oxidative Cross-Coupling of 2-Naphthols: Enantioselective Synthesis of 3,3'-Substituted C1-Symmetric BINOLs[J]. Angewandte Chemie International Edition, 2019, 58(32): 11023-11027.
[66] Hayashi H, Ueno T, Kim C, et al. Ruthenium-Catalyzed Cross-Selective Asymmetric Oxidative Coupling of Arenols[J]. Organic Letters, 2020, 22(4):1469-1474.
[67] Zhang J-W, Jiang F, Chen Y-H, et al. Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones[J]. Science China Chemistry, 2021, 64(9): 1515-1521.
[68] Kazlauskas R J. Resolution of Binaphthols and Spirobiindanols Using Cholesterol Esterase[J]. Journal of the American Chemical Society, 1989, 111(13): 4953–4959.
[69] Juarez-Hernandez M, Johnson D V, Holland H L, et al. Lipase-catalyzed stereoselective resolution and desymmetrization of binaphthols[J]. Tetrahedron: Asymmetry, 2003, 14(3): 289-291.
[70] Periasamy M, Venkatraman L, Sivakumar S, et al. A New, Convenient Method of Resolution of Racemic 1,1'-Bi-2-naphthol Using Boric Acid and (R)-(+)--Methylbenzylamine[J]. The Journal of Organic Chemistry, 1999, 64(20): 7643-7645.
[71] Li Z, Liang X, Wu F, et al. A convenient resolution method for 1,1'-bi-2-naphthol and 4,4'-dibromo-1,1'-spirobiindane-7,7'-diol with menthyl chloroformate in the presence of TBAB[J]. Tetrahedron: Asymmetry, 2004, 15(4): 665-669.
[72] Aoyama H, Tokunaga M, Kiyosu J, et al. Kinetic Resolution of Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls by Palladium-Catalyzed Alcoholysis[J]. Journal of the American Chemical Society, 2005, 127(30): 10474-10475.
[73] Lu S, Poh S B, Siau W Y, et al. Kinetic resolution of tertiary alcohols: highly enantioselective access to 3-hydroxy-3-substituted oxindoles[J]. Angewandte Chemie International Edition, 2013, 52(6): 1731-1734.
[74] Kuwano S, Harada S, Kang B, et al. Enhanced rate and selectivity by carboxylate salt as a basic cocatalyst in chiral N-heterocyclic carbene-catalyzed asymmetric acylation of secondary alcohols[J]. Journal of the American Chemical Society, 2013, 135(31): 11485-11488.
[75] Suzuki Y, Yamauchi K, Muramatsu K, et al. First example of chiral N-heterocyclic carbenes as catalysts for kinetic resolution[J]. Chemical Communications, 2004, 23: 2770-2771.
[76] Lu S, Poh S B, Zhao Y. Kinetic resolution of 1,1'-biaryl-2,2'-diols and amino alcohols through NHC-catalyzed atroposelective acylation[J]. Angewandte Chemie International Edition, 2014, 53(41): 11041-11045.
[77] Ma G, Deng J, Sibi M P. Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds[J]. Angewandte Chemie International Edition, 2014, 53(44): 11818-11821.
[78] Moustafa G A I, Oki Y, Akai S. Lipase-Catalyzed Dynamic Kinetic Resolution of C1- and C2-Symmetric Racemic Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls[J]. Angewandte Chemie International Edition, 2018, 57(32): 10278-10282.
[79] Jones B A, Balan T, Jolliffe J D, et al. Practical and Scalable Kinetic Resolution of BINOLs Mediated by a Chiral Counterion[J]. Angewandte Chemie International Edition, 2019, 58(14): 4596-4600.
[80] Smrcina M, Vyskocil S, Maca B, et al. Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine Derivatives. A Facile Synthesis of 2,2',3-Trisubstituted and 2,2',3,3'-Tetrasubstituted 1,1'-Binaphthyls[J]. The Journal of Organic Chemistry, 1994, 59(8): 2156-2163.
[81] Vyskocil S, Smrcina M, Lorenc M, et al. On the ‘Novel two-phase oxidative cross-coupling of the two-component molecular crystal of 2-naphthol and 2-naphthylamine[J]. Chemical Communications, 1998, 585-586.
[82] Qi L-W, Mao J-H, Zhang J, et al. Organocatalytic asymmetric arylation of indoles enabled by azo groups[J]. Nature Chemistry, 2018, 10(1): 58-64.
[83] Qi L-W, Li S, Xiang S-H, et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy[J]. Nature Catalysis, 2019, 2(4): 314-323.
[84] Ding W-Y, Yu P, An Q-J, et al. DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene[J]. Chem, 2020, 6(8): 2046-2059.
[85] Lu S, Ng S V H, Lovato K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation[J]. Nature Communications, 2019, 10(1): 3061.
[86] Shirakawa S, Wu X, Maruoka K. Kinetic resolution of axially chiral 2-amino-1,1'-biaryls by phase-transfer-catalyzed N-allylation[J]. Angewandte Chemie International Edition, 2013, 52(52): 14200-14203.
[87] Liu W, Jiang Q, Yang X. A Versatile Method for Kinetic Resolution of Protecting-Group-Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation[J]. Angewandte Chemie International Edition, 2020, 59(52): 23598-23602.
[88] Yuan H, Du Y, Liu F, et al. Tandem approach to NOBIN analogues from arylhydroxylamines and diaryliodonium salts via
[3,3]-sigmatropic rearrangement[J]. Chemical Communications, 2020, 56(59): 8226-8229.
[89] Zhang J W, Qi L W, Li S, et al. Direct Construction of NOBINs via Domino Arylation and Sigmatropic Rearrangement Reactions[J]. Chinese Journal of Chemistry, 2020, 38(12): 1503-1514.
[90] Zhang J W, Xiang S H, Li S, et al. Copper-Catalyzed Synthesis of Axially Chiral Biaryls with Diaryliodonium Salts as Arylation Reagents[J]. Molecules, 2021, 26(11).
[91] Wang M, Liu Y, Wang L, et al. Cascade Chan-Lam C−O Coupling/
[3,3]-Rearrangement of Arylhydroxylamines with Arylboronic Acids Toward NOBINAnalogues[J]. Advanced Synthesis & Catalysis, 2021, 363(6): 1733-1738.
[92] Hatano M, Toh K, Ishihara K. Enantioselective Aza-Friedel-Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral C1-Symmetric Bis(phosphoric Acid)[J]. Organic Letters, 2020, 22(24): 9614-9620.
[93] 杨丽,徐括喜,王晨娟,等. 基于2,2'-联萘酚衍生物的荧光化学传感器对手性异构体选择性识别研究进展[J]. 有机化学,2013,33(12):2496-2503.
[94] Chen Y H, Cheng D J, Zhang J, et al. Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols[J]. Journal of the American Chemical Society, 2015, 137(48): 15062-15065.
[95] Moliterno M, Cari R, Puglisi A, et al. Quinine-Catalyzed Asymmetric Synthesis of 2,2'-Binaphthol-Type Biaryls[J]. Angewandte Chemie International Edition, 2016, 55(22): 6525-6529.
[96] Coombs G, Sak M H, Miller S J. Peptide-Catalyzed Fragment Couplings that Form Axially Chiral Non-C2-Symmetric Biaryls[J]. Angewandte Chemie International Edition, 2020, 59(7): 2875-2880.
[97] Wang J Z, Zhou J, Xu C, et al. Symmetry in Cascade Chirality-Transfer Processes: A Catalytic Atroposelective Direct Arylation Approach to BINOL Derivatives[J]. Journal of the American Chemical Society, 2016, 138(16): 5202-5205.
[98] Cheng D J, Shao Y D. Advances in the Catalytic Asymmetric Synthesis of Atropisomeric Hexatomic N‐Heterobiaryls[J]. Advanced Synthesis & Catalysis, 2020, 362(15): 3081-3099.
[99] 张硕,廖港,史炳锋. 含有五元杂芳结构的联芳轴手性化合物的对映选择性合成[J]. 有机化学,2019,39(6):1522-1528.
[100] Tan G, Schrader M L, Daniliuc C, et al. C-H Activation Based Copper-Catalyzed One-Shot Synthesis of N,O-Bidentate Organic Difluoroboron Complexes[J]. Angewandte Chemie International Edition, 2020, 59(48): 21541-21545.
[101] Lim A D, Codelli J A, Reisman S E. Catalytic Asymmetric Synthesis of Highly Substituted Pyrrolizidines[J]. Chemical Science, 2012, 4(2): 650-654.
[102] Pais V F, Ramirez-Lopez P, Romero-Arenas A, et al. Red-Emitting Tetracoordinate Organoboron Chelates: Synthesis, Photophysical Properties, and Fluorescence Microscopy[J]. The Journal of Organic Chemistry, 2016, 81(20): 9605-9611.
[103] Czarnocki Z, Pomarański P. Arylpyridines: A Review from Selective Synthesis to Atropisomerism[J]. Synthesis, 2018, 51(03): 587-611.
[104] Glaser F, Kerzig C, Wenger O S. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods[J]. Angewandte Chemie International Edition, 2020, 59(26): 10266-10284.
[105] Yan Y, Feng P, Zheng Q Z, et al. PdCl2 and N-hydroxyphthalimide co-catalyzed C(sp2)-H hydroxylation by dioxygen activation[J]. Angewandte ChemieInternational Edition, 2013, 52(22): 5827-5831.
[106] Das P, Saha D, Saha D, et al. Aerobic Direct C(sp2)-H Hydroxylation of 2-Arylpyridines by Palladium Catalysis Induced with Aldehyde Auto-Oxidation[J]. ACS Catalysis, 2016, 6(9): 6050-6054.
[107] Shah S S, Paul A, Bera M, et al. Metallaphotoredox-Mediated Csp2-H Hydroxylation of Arenes under Aerobic Conditions[J]. Organic Letters, 2018, 20(18): 5533-5536.
[108] Quinonero O, Jean M, Vanthuyne N, et al. Combining Organocatalysis with Central-to-Axial Chirality Conversion: Atroposelective Hantzsch-Type Synthesis of 4-Arylpyridines[J]. Angewandte Chemie International Edition, 2016, 55(4): 1401-1405.
[109] Kashima K, Teraoka K, Uekusa H, et al. Rhodium-Catalyzed Atroposelective
[2+2+2] Cycloaddition of Ortho-Substituted Phenyl Diynes with Nitriles: Effect of Ortho Substituents on Regio- and Enantioselectivity[J]. Organic Letters, 2016, 18(9): 2170-2173.
[110] Shao Y-D, Dong M-M, Wang Y-A, et al. Organocatalytic Atroposelective Friedländer Quinoline Heteroannulation[J]. Organic Letters, 2019, 21(12): 4831-4836.
[111] Wan J, Liu H, Lan Y, et al. Catalytic Asymmetric Synthesis of Atropisomeric Quinolines through the Friedländer Reaction[J]. Synlett, 2019, 30(19): 2198-2202.
[112] Jiang P Y, Fan K F, Li S, et al. Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives[J]. Nature Communications, 2021, 12(1): 2384.
[113] Zhang L, Shen J, Wu S, et al. Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes[J]. Angewandte Chemie International Edition, 2020, 59(51): 23077-23082.
[114] Kumar Hota S, Jinan D, Prakash Panda S, et al. Organophotoredox-Catalyzed Late-Stage Functionalization of Heterocycles[J]. Asian Journal of Organic Chemistry, 2021, 10(8): 1848-1860.
[115] Lu F-D, He G-F, Lu L-Q, et al. Metallaphotoredox catalysis for multicomponent coupling reactions[J]. Green Chemistry, 2021, 23(15): 5379-5393.
[116] Hari D P, Schroll P, König B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts[J]. Journal of the American Chemical Society, 2012, 134(6): 2958-2961.
[117] Yang S, Chen M, Tang P. Visible-Light Photoredox-Catalyzed and Copper-Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates[J]. Angewandte Chemie International Edition, 2019, 58(23): 7840-7844.
[118] Zhang S, Tang Z, Bao W, et al. Perylenequinonoid-catalyzed photoredox activation for the direct arylation of (het)arenes with sunlight[J]. Organic &Biomolecular Chemistry, 2019, 17(17): 4364-4369.
[119] Ouyang X H, Cheng J, Li J H. 1,2-Diarylation of alkenes with aryldiazonium salts and arenes enabled by visible light photoredox catalysis[J]. Chemical Communications, 2018, 54(63): 8745-8748.
[120] Wang D, Cheng C, Wu Q, et al. Visible-Light Excitation of BODIPYs Enables Self-Promoted Radical Arylation at Their 3,5-Positions with Diazonium Salts[J]. Organic Letters, 2019, 21(13): 5121-5125.
[121] Hari D P, Hering T, König B. Visible Light Photocatalytic Synthesis of Benzothiophenes[J]. Organic Letters, 2012, 14(20): 5334-5337.
[122] Xiao J, Xue D, Liu Y-X, et al. Room-Temperature Arylation of Arenes and Heteroarenes with Diaryliodonium Salts by Photoredox Catalysis[J]. Synlett, 2013, 24(04): 507-513.
[123] Tobisu M, Furukawa T, Chatani N. Visible Light-mediated Direct Arylation of Arenes and Heteroarenes Using Diaryliodonium Salts in the Presence and Absence of a Photocatalyst[J]. Chemistry Letters, 2013, 42(10): 1203-1205.
[124] Baralle A, Fensterbank L, Goddard J P, et al. Aryl radical formation by copper(I) photocatalyzed reduction of diaryliodonium salts: NMR evidence for a Cu(II)/Cu(I) mechanism[J]. Chemistry-A European Journal, 2013, 19(33): 10809-10813.
[125] Fumagalli G, Boyd S, Greaney M F. Oxyarylation and Aminoarylation of Styrenes Using Photoredox Catalysis[J]. Organic Letters, 2013, 15(17): 4398-4401.
[126] Pagire S K, Hossain A, Reiser O. Temperature Controlled Selective C-S or C-C Bond Formation: Photocatalytic Sulfonylation versus Arylation of Unactivated Heterocycles Utilizing Aryl Sulfonyl Chlorides[J]. Organic Letters, 2018, 20(3): 648-651.
[127] Deng G B, Wang Z Q, Xia J D, et al. Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis[J]. Angewandte Chemie International Edition, 2013, 52(5): 1535-1538.
[128] Gu L, Jin C, Liu J, et al. Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines[J]. Chemical Communications, 2014, 50(35): 4643-4645.
[129] Nguyen J D, D'Amato E M, Narayanam J M, et al. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions[J]. Nature Chemistry, 2012, 4(10): 854-859.
[130] Meyer A U, Slanina T, Yao C-J, et al. Metal-Free Perfluoroarylation by Visible Light Photoredox Catalysis[J]. ACS Catalysis, 2015, 6(1): 369-375.
[131] Senaweera S, Weaver J D. Dual C-F, C-H Functionalization via Photocatalysis: Access to Multifluorinated Biaryls[J]. Journal of the American Chemical Society,2016, 138(8): 2520-2523.
[132] Dewanji A, Bulow R F, Rueping M. Photoredox/Nickel Dual-Catalyzed Reductive Cross Coupling of Aryl Halides Using an Organic Reducing Agent[J]. Organic Letters, 2020, 22(4): 1611-1617.
[133] Lee D S, Kim C S, Iqbal N, et al. Organophotocatalytic Arene Functionalization: C-C and C-B Bond Formation[J]. Organic Letters, 2019, 21(24): 9950-9953.
[134] Boyington A J, Seath C P, Zearfoss A M, et al. Catalytic Strategy for Regioselective Arylethylamine Synthesis[J]. Journal of the American Chemical Society, 2019, 141(9): 4147-4153.
[135] Liang K, Liu Q, Shen L, et al. Intermolecular oxyarylation of olefins with aryl halides and TEMPOH catalyzed by the phenolate anion under visible light[J]. Chemical Science, 2020, 11(27): 6996-7002.
[136] Patra T, Mukherjee S, Ma J, et al. Visible-Light-Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions[J]. Angewandte Chemie International Edition, 2019, 58(31): 10514-10520.
[137] Berger F, Plutschack M B, Riegger J, et al. Site-selective and versatile aromatic C-H functionalization by thianthrenation[J]. Nature, 2019, 567(7747): 223-228.
[138] Li J, Chen J, Sang R, et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination[J]. Nature Chemistry, 2020, 12(1): 56-62.
[139] Kim H, Kim H, Lambert T H, et al. Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials[J]. Journal of the American Chemical Society, 2020, 142(5): 2087-2092.
[140] Cowper N G W, Chernowsky C P, Williams O P, et al. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling[J]. Journal of the American Chemical Society, 2020, 142(5): 2093-2099.
[141] Proctor R S J, Phipps R J. Recent Advances in Minisci-Type Reactions[J]. Angewandte Chemie International Edition, 2019, 58(39): 13666-13699.
[142] Xue D, Jia Z H, Zhao C J, et al. Direct arylation of N-heteroarenes with aryldiazonium salts by photoredox catalysis in water[J]. Chemistry-A European Journal, 2014, 20(10): 2960-2965.
[143] Fabry D C, Ho Y A, Zapf R, et al. Blue light mediated C–H arylation of heteroarenes using TiO2 as an immobilized photocatalyst in a continuous-flow microreactor[J]. Green Chemistry, 2017, 19(8): 1911-1918.
[144] Bartolomeu A d A, Silva R C, Brocksom T J, et al. Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach[J]. The Journal of Organic Chemistry, 2019, 84(16): 10459-10471.
[145] Candish L, Freitag M, Gensch T, et al. Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals[J]. Chemical Science, 2017, 8(5): 3618-3622.
[146] Hagui W, Soule J F. Synthesis of 2-Arylpyridines and 2-Arylbipyridines via Photoredox-Induced Meerwein Arylation with in Situ Diazotization of Anilines[J]. The Journal of Organic Chemistry, 2020, 85(5): 3655-3663.
[147] Fujiwara Y, Domingo V, Seiple I B, et al. Practical C-H functionalization of quinones with boronic acids[J]. Journal of the American Chemical Society, 2011, 133(10): 3292-3295.
[148] Tajuddeen N, Bringmann G. N,C-Coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products[J]. Natural Product Reports, 2021, 38(12): 2154-2186.
[149] Carmona J A, Rodriguez-Franco C, Fernandez R, et al. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies[J]. Chemical Society Reviews, 2021, 50(5): 2968-2983.
[150] Chen Y H, Li H H, Zhang X, et al. Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl-p-Quinones: Platform Molecules for Diversity-Oriented Synthesis of Biaryldiols[J]. Angewandte Chemie International Edition, 2020, 59(28): 11374-11378.
[151] Mal D, Chakraborty S. C-Glycosylation of Substituted β-Naphthols with Trichloroacetimidate Glycosyl Donors[J]. Synthesis, 2018, 50(07): 1560-1568.
[152] Majumdar K C, Mondal S, Ghosh D. Synthesis of tricyclic and tetracyclic sultones by Pd-catalyzed intramolecular cyclization[J]. Tetrahedron Letters, 2009, 50(33): 4781-4784.
[153] Chen Y H, Qi L W, Fang F, et al. Organocatalytic Atroposelective Arylation of 2-Naphthylamines as a Practical Approach to Axially Chiral Biaryl Amino Alcohols[J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[154] Ting S I, Garakyaraghi S, Taliaferro C M, et al. 3d-d Excited States of Ni(II) Complexes Relevant to Photoredox Catalysis: Spectroscopic Identification and Mechanistic Implications[J]. Journal of the American Chemical Society, 2020, 142(12): 5800-5810.
[155] He X L, Wang C, Wen Y W, et al. Recent Advances in Catalytic Atroposelective Construction of Pentatomic Heterobiaryl Scaffolds[J]. ChemCatChem, 2021, 13(16): 3547-3564.
[156] Nguyen T T. Traceless point-to-axial chirality exchange in the atropselective synthesis of biaryls/heterobiaryls[J]. Organic & Biomolecular Chemistry, 2019, 17(29): 6952-6963.
[157] 澍 陈,任朝丽,田晓雨,等. 吡啶联噁唑酰胺类化合物的设计、合成及杀菌活性[J]. 有机化学,2021,41(2):842-848.
[158] Candish L, Collins K D, Cook G C, et al. Photocatalysis in the Life ScienceIndustry[J]. Chemical Reviews, 2022, 122(2): 2907-2980.
[159] 董建洋,刘玉秀,汪清民. 可见光催化的Minisci 反应研究进展[J]. 有机化学, 2021,41(10):3771-3791.
[160] Seath C P, Vogt D B, Xu Z, et al. Radical Hydroarylation of Functionalized Olefins and Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions[J]. Journal of the American Chemical Society, 2018, 140(45): 15525-15534.
[161] Zhu D-L, Jiang S, Young D J, et al. Visible-light-driven C(sp2)–H arylation of phenols with arylbromides enabled by electron donor–acceptor excitation[J]. Chemical Communications, 2022, 58(22): 3637-3640.
[162] Filippini G, Nappi M, Melchiorre P. Photochemical direct perfluoroalkylation of phenols[J]. Tetrahedron, 2015, 71(26): 4535-4542.
[163] Guo S-Y, Yang F, Song T-T, et al. Photo-induced catalytic halopyridylation of alkenes[J]. Nature Communications, 2021, 12(1): 6538.

所在学位评定分委会
化学系
国内图书分类号
O625.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353150
专题理学院_化学系
推荐引用方式
GB/T 7714
李恒辉. 轴手性联芳基化合物的芳基化构建策略研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849567-李恒辉-化学系.pdf(10793KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李恒辉]的文章
百度学术
百度学术中相似的文章
[李恒辉]的文章
必应学术
必应学术中相似的文章
[李恒辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。