中文版 | English
题名

茂锆苯炔在合成苯并硼烯和苯基邻二硼烷中的应用研究

其他题名
EXPLOITING THE APPLICATION OF ZIRCONOCENE BENZYNE COMPLEXES IN SYNTHESIS OF BENZOBORIRENE AND BENZYLDIBORANE
姓名
姓名拼音
Zhang Hui
学号
11849574
学位类型
博士
学位专业
081701 化学工程
学科门类/专业学位类别
08 工学
导师
叶青
导师单位
化学系
论文答辩日期
2022-05-18
论文提交日期
2022-07-08
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

    硼杂芳环类化合物是一类具有独特性质的有机硼化合物,该化合物作为一类含硼有机 π 共轭体系,是“主族含硼元素有机化学”和“π 共轭体系”的结合。 苯并硼杂环丙烯类化合物是其中的一种含硼 π 杂环化合物,它与苯并环丙烯基 阳离子互为等电子体。虽然早期有较多关于苯并硼杂环丙烯化合物的理论计算 研究,但关于苯并硼杂环丙烯化合物的实验合成研究很少,且绝大多数只是在 Matrix 基质中观测到信号,并未实验获得结构。直到 2018 年, Bettinger 等报导了一例氮杂环卡宾稳定的苯并硼杂环丙烯化合物,然而该加合物的稳定性仍不理想,在室温条件下,一天内全部分解,或在﹣35 °C 条件下,数周内二聚。 除此之外,目前对于无路易斯碱稳定的苯并硼杂环丙烯化合物的合成及其反应性研究,几乎没有报导。因此,成功设计并合成出一类无路易斯碱稳定的苯并硼杂环丙烯并对其进行性质研究,将是一个里程碑式的结果。

    金属茂锆试剂在金属有机化学中具有广泛的应用,它们可以参与环加成、 偶联等各种类型反应。其中,二苯基二茂锆试剂是一类常见的茂锆苯炔类化合 物前体。目前为止,尽管关于茂锆试剂诱导的反应,已经有过较为系统的报导, 但还没有茂锆苯炔类化合物与有机硼烷试剂反应的相关研究。通过研究二苯基二茂锆与卤代硼烷反应,本研究成功获得了首例液相中合成的无路易斯碱加合的苯并硼杂环丙烯分子。同时,对苯并硼杂环丙烯化合物的合成方法进行拓展研究,还获得了多种苯基邻二硼烷类化合物。

    本研究尝试了五种不同的合成策略来合成苯并硼杂环丙烯分子,实验结果表明,只有当二苯基二茂锆试剂与二溴代氨基硼烷反应时,才能成功地合成苯并硼杂环丙烯类化合物。利用二苯基二茂锆试剂与二溴代氨基硼烷,在 80 °C 条件下加热的反应策略,最终以 65%的收率获得了苯并硼杂环丙烯类化合物。 除此之外,还进行了茂锆试剂与不同卤代硼烷的反应适应性研究,获得了多种茂锆半开环类含硼化合物、二硼杂蒽类化合物等,并通过单晶衍射确定了其结构。

    同时,本研究还对苯并硼杂环丙烯分子的合成进行了机理分析,并对苯并硼杂环丙烯化合物进行了反应性研究。二苯基二茂锆试剂在 80 °C 条件下,首先发生 β 氢消除,进而生成茂锆苯炔类中间体。随后与二溴代氨基硼烷反应, 生成茂锆半开环类含硼化合物,再经历 σ 复分解过程,发生盐消除,最后生成苯并硼杂环丙烯。此外,也研究了苯并硼杂环丙烯分子与路易斯碱、小分子异腈、羰基插入的反应。并以 30% 的收率获得了卡宾配位后 1,3−三甲基硅烷基迁移的产物结构、小分子活化插入形成的苯并硼杂五元环的产物结构,并对相 关结构进行了单晶结构表征。

    此外,本研究还对苯基邻二硼烷类化合物的合成及反应性质,进行了分析研究。以往合成苯基邻二硼烷类化合物的方法通常会使用到毒性较大试剂、昂贵的原料和催化剂,或需要复杂工艺等条件。本研究中,通过采用二苯基二茂锆与氯代硼烷反应,在 80 °C 条件下加热后经历盐消除过程,成功合成了多种苯基邻二硼烷类化合物。此外,本研究还对茂锆苯炔类化合物与卤代硼烷反应模式,进行了分析。当二苯基二茂锆类试剂与芳基溴代硼烷反应时,能获得对应的二硼杂蒽类化合物;与硅烷基溴代硼烷反应时,能以 65%的收率获得苯并硼杂环丙烯类化合物;与氯代硼烷反应时,能以37%的收率获得对应的茂锆半开环类含硼化合物及对应的苯基邻二硼烷类化合物。

    总之,本研究通过二苯基二茂锆试剂与二溴代氨基硼烷反应,成功合成了苯并硼杂环丙烯化合物,并对合成的苯并硼杂环丙烯化合物进行反应性研究。 此外,本研究还对茂锆试剂与卤代硼烷反应的方法进行了底物普适性的分析研究。通过调控不同的卤代硼烷试剂及反应条件,本研究成功实现了苯并硼杂环丙烯、苯基邻二硼烷类化合物、苯并硼氮杂环类化合物、二硼杂蒽类化合物和茂锆半开环类含硼化合物的合成,为后续相关化合物的应用研究及开发更多新型含硼 π 杂环类化合物奠定了基础。

其他摘要

    Boron-containing π-heterocyclics are a class of organic boron compounds which exhibit unique properties. Boron-containing organic π-conjugated molecules are a combination of "main group organic chemistry of boron-containing compounds" and "π-conjugated systems". Benzoborirenes are isoelectronic to benzocyclopropenyl cations. Although there were many theoretical calculations on benzoborirenes in the early days. However, there were few experimental synthetic studies on benzoborirenes, and most of these structures could only be observed via signals in the Matrix. Until 2018, Bettinger's group reported a case of benzoboriene stabilized by N-Heterocyclic Carbene (NHC). Nevertheless, the stability of the adduct was still not ideal. It was decomposed completely in one day at room temperature or dimerized in a few weeks at −35 °C. So far, synthesis of a base-free benzoborirene has not been achieved yet. Therefore, it will be a milestone to successfully synthesize and structurally characterize a base-free benzoborirene.    

    Zirconium metallocene reagents are widely used in organometallic chemistry. They can participate in various types of reactions such as cycloaddition, coupling. Among them, diphenylzirconocene reagent is a common precursor of zirconocene benzyne complexes. So far, although there have been systematic reports on the reaction mediateded by zirconocene reagent, there is no research on the reaction of zirconocene benzyne complexes with organoborane reagent. Using Cp2ZrPh2 and amino(dibromo)borane, this thesis presented the first successful solution-phase synthesis of a base-free benzoborirene with a yield of 65%. In addition, the synthesis of benzyldiboranes was developed when Cp2ZrPh2 reacted with other dihaloborane complexes.

    Chapter 3 shows the process of exploring the synthesis of benzoborirene. We designed five different synthesis strategies to synthesize benzoborirene. Finally, the benzoboriene was successfully synthesized using Cp2ZrPh2 and amino(dibromo)borane. In addition, we also studied the reaction suitability of zirconocene reagents with different haloboranes. By expanding the synthetic method, a variety of zirconocene semi-ring-opened boron-containing compounds and diboranthene compounds were obtained, and the related structures were characterized by single crystal diffraction.

    Chapter 4 presents mechanism study and the properties of benzoborienes. At 80 °C, the diphenyl zirconocene reagent eliminates β-hydrogen, and then generates zirconocene benzyne intermediates. Subsequently, it reacts with dibromo-aminoborane to generate zirconocene semi-ring-opened boron-containing compounds, and undergoes a σ metathesis reaction. In addition, we also studied the reaction of benzoboriene with Lewis bases, and the reactions involved in the activation of isonitriles and CO-based small molecules. By activating small molecules, a variety of structures with small molecule insertion were obtained, and the related structures were characterized by single crystal structure.

    Chapter 5 shows the synthesis and properties of benzyldiboranes. The previous synthetic procedures of benzyldiboranes were usually with toxic reagents, expensive raw materials and catalysts, or complex processes. In this paper, by the method of reacting diphenyl zirconocene with haloboranes, we can synthesize various benzyldiboranes. In addition, we analyzed the reaction mode of zirconocene benzyne complexes with haloboranes. When using dibromoarylborane, diboranthenes can be obtained; using amino(dibromo)borane benzoborirene can be obtained with a yield of 65%; using dichloroborane, zirconocene semi-ring-opened boron-containing compounds and benzyldiboranes can be obtained.

    In conclusion, the benzoborirene was successfully synthesized by the reaction of diphenylzirconocene reagent with dibromo-aminoborane, and the reactivity of the synthesized benzoborirene was also studied. On the other hand, benzyldiboranes, diboranthene compounds, zirconocene semi-opened boron-containing compounds were synthesized via adjusting different halogenated borane reagents and reaction conditions. This thesis provides a series of novel methods of benzoborienes, benzyldiboranes, benzoborazepines, diboranthenes, zirconocene semi-ring-opened boron-containing compounds. The synthetic method of these compounds can not only lay a foundation for the subsequent application research, but also can develop more new boron-containing π-heterocyclic systems.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] BOSE S K, MAO L, KUEHN L, et al. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes [J]. Chemical Reviews, 2021, 121(21): 13238−341.
[2] ZHANG Z, PENEV E S, YAKOBSON B I. Two-Dimensional Boron: Structures, Properties and Applications [J]. Chemical Society Reviews, 2017, 46(22): 6746−63.
[3] BRAUNSCHWEIG H, DEWHURST R D. Boron-Boron Multiple Bonding: From Charged to Neutral and Back Again [J]. Organometallics, 2014, 33(22): 6271−7.
[4] ASTRUC D. The 2010 Chemistry Nobel Prize to R.F. Heck, E. Negishi, and A. Suzuki for Palladium-Catalyzed Cross-Coupling Reactions [J]. Analytical & Bioanalytical Chemistry, 2011, 399(5): 1811−4.
[5] VEDEJS E. The 1979 Nobel Prize for Chemistry [J]. Science, 1980, 207(4426): 42−4.
[6] PROCACCIA I, ROSS J. The 1977 Nobel Prize in Chemistry [J]. Science, 1977, 198(4318): 716−7.
[7] 张韶光 . 锆金属杂环和氮杂半瞬烯的合成 , 结 构 , 反应与应用 : 新型氮杂环的合成 [D].北京大学 , 2013.
[8] 刘俊 . 茂锆诱导的苯衍生物和喹啉衍生物的合成研究 [D]. 天津大学 , 2010.
[9] AKAI S, PEAT A J, BUCHWALD S L. Regioselective, Directed Meta Acylation of Aromatic Compounds [J]. Journal of the American Chemical Society, 1998, 120(36): 9119−25.
[10] BUCHWALD S L, FANG Q. An Efficient One-Pot Method for the Preparation of Polysubstituted Benzothiophenes [J]. Journal of Organic Chemistry, 1989, 54(12): 2793−7.
[11] JESPERSEN K, CREMER D, DILL J D, et al. Aromaticity in Small Rings Containing Boron and Carbon, ((CH)2(BH)n, n = 1,2): Comarisons with Isoelectronic Carbocations. The Decisive Roles of Orbital Mixing and Nonbonded 1,3-Interactions in the Structures of Four-Membered Rings [J]. Journal of the American Chemical Society, 1981, 103(10): 2589−94.
[12] BYUN Y G, SAEBO S, PITTMAN C U. An Ab Initio Study of Potentially Aromatic and Antiaromatic Three-Membered Rings [J]. Journal of the American Chemical Society, 1991, 113(10): 3689−96.
[13] MAKSIC Z B, ECKERT-MAKSIC M, PFEIFER K H. Reversed Mills-Nixon Effect in Benzoborirene and Benzocyclopropenyl Cations [J]. Journal of Molecular Structure, 1993, 300(1−3): 445−53.
[14] KAISER R I, BETTINGER H F. Gas-Phase Detection of the Elusive Benzoborirene Molecule [J]. Angewandte Chemie-International Edition, 2002, 41(13): 2350−2.
[15] HAHN J, KECK C, MAICHLE-MOSSMER C, et al. Synthesis and Ring Strain of a Benzoborirene-N-Heterocyclic Carbene Adduct [J]. Chemistry-a European Journal, 2018, 24(70): 18634−7.
[16] SCHACHT W, KAUFMANN D. Thermolysis of Arylhaloboranes; Synthesis of 1,3-Dibora-and 1,3-Borasilaindanes [J]. Journal of the Organometallic Chemistry, 1987, 331(2): 139−52.
[17] NIWA T, OCHIAI H, HOSOYA T. Copper-Catalyzed Ipso-Borylation of Fluoroarenes [J]. ACS Catalysis, 2017, 7(7): 4535−41.
[18] PITTMAN C U, KRESS A, PATTERSON T B, et al. INDO [Intermediate Neglect of Differential Overlap] Theoretical Studies. VI. Cyclopropenyl, azirinyl, and diazirinyl cations [J]. Journal of Organic Chemistry, 1974, 39(3): 373−8.
[19] BRAUNSCHWEIG H, DEWHURST R D, RADACKI K, et al. Trihapto Ligation of A Borirene to A Single Metal Atom: A Heterocyclic Analogue of the η3-Cyclopropenyl Ligand [J]. Angewandte Chemie−International Edition, 2014, 53(24): 6263−6.
[20] KRASOWSKA M, BETTINGER H F. Reactivity of Borylenes toward Ethyne, Ethene, and Methane [J]. Journal of the American Chemical Society, 2012, 134(41): 17094−103.
[21] LEGARE M A, PRANCKEVICIUS C, BRAUNSCHWEIG H. Metallomimetic Chemistry of Boron [J]. Chemical Reviews, 2019, 119(14): 8231−61.
[22] EISCH J J, SHAFII B, ODOM J D, et al. ChemInform Abstract: Bora-Aromatic Systems. Part 11. Aromatic Stabilization of the Triarylborirene Ring System by Tricoordinate Boron and Facile Ring Opening with Tetracoordinate Boron [J]. Cheminform, 1990, 21(24): 1847−53.
[23] ANDERSON C E, BRAUNSCHWEIG H, DEWHURST R D. Borylene Transfer from Transition Metal Borylene Complexes [J]. Organometallics, 2008, 27(24): 6381−9.
[24] BRAUNSCHWEIG H, HERBST T, RAIS D, et al. Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes [J]. Journal of the American Chemical Society, 2009, 131(25): 8989−99.
[25] BRAUNSCHWEIG H, YE Q, RADACKI K, et al. Borylene-Based Functionalization of Iron-Alkynyl-σ-Complexes and Stepwise Reversible Metal-Boryl-to-Borirene Transformation: Synthesis, Characterization, and Density Functional Theory Studies [J]. Inorganic Chemistry, 2010, 50(1): 62−71.
[26] KRASOWSKA M, BETTINGER H F. Ring Enlargement of Three-Membered Boron Heterocycles upon Reaction with Organic π Systems: Implications for the Trapping of Borylenes [J]. Chemistry-a European Journal, 2016, 22(30): 10661−70.
[27] BUDZELAAR P H M, VAN DER KERK S M, KROGH-JESPERSEN K, et al. Dimerization of Borirene to 1,4-Diboracyclohexadiene. Structures and Stabilities of (CH)4(BH)2 Molecules [J]. Journal of the American Chemical Society, 1986, 108(14): 3960−7.
[28] BRAUNSCHWEIG H, YE Q, RADACKI K, et al. Reactivity of a Platinum-Substituted Borirene [J]. Dalton Transactions, 2011, 40(14): 3666−70.
[29] EISCH J J. Boron–Carbon Multiple Bonds. Advances in Organometallic Chemistry, 1996, 39(1): 355−391.
[30] IKAWA T, BARDER T E, BISCOE M R, et al. Pd-Catalyzed Amidations of Aryl Chlorides Using Monodentate Biaryl Phosphine Ligands: A Kinetic, Computational, and Synthetic Investigation [J]. Journal of the American Chemical Society, 2007, 129(43): 13001−7.
[31] BRAUNSCHWEIG H, DEWHURST R D, FERKINGHOFF K. Carbene-Induced Synthesis of the First Borironium Cations Using the [(η5-C5Me5)Fe(CO)2]-Anion as an Unlikely Leaving Group [J]. Chemical Communication, 2016, 52(1): 183−5.
[32] JIN Z, GU X P, QIU L L, et al. Air-Stable CpPd(NHC)Cl (NHC=N-Heterocyclic Carbene) Complexes as Highly Active Precatalysts for Kumada–Tamao–Corriu Coupling of Aryl and Heteroaryl Chlorides [J]. Cheminform, 2011, 696(4): 859−63.
[33] BRAUNSCHWEIG H, DAMME A, DEWHURST R D, et al. Electronic and Structural Effects of Stepwise Borylation and Quaternization on Borirene Aromaticity [J]. Journal of the American Chemical Society, 2013, 135(5): 1903−11.
[34] MAKSIC Z B, ECKERTMAKSIC M, PFEIFER K H. Reversed Mills-Nixon Effect in Benzoborirene and Benzocyclopropenyl Cations [J]. Journal of Molecular Structure, 1993, 300(3): 445−53.
[35] BETTINGER H F. Generation of Iodobenzoborirene, a Boraaromatic Cyclopropabenzene Derivative [J]. Chemical Communication, 2005,(21): 2756−7.
[36] BETTINGER H F. Phenylborylene: Direct Spectroscopic Characterization in Inert Gas Matrices [J]. Journal of the American Chemical Society, 2006, 128(8): 2534−5.
[37] EISCH J J. Bora-aromatic systems VI. Dehalogenation of Organoboron Dihalides in the Search for Borenes. Cheminform, 1979, 171(2): 141−153.
[38] EISCH J J, KOTOWICZ B W. Novel Organoborane Lewis Acids via Selective Boron-Tin Exchange Processes Steric Constraints to Electrophilic Initiation by the Boron Halide [J]. European Journal of Inorganic Chemistry, 2010, 1998(6): 761−9.
[39] SINDLINGER M, STRöBELE M, MAICHLE-MöSSMER C, et al. Kinetic Stabilization Allows Structural Analysis of a Benzoborirene [J]. Chemical Communication, 2022, 58, 2818−2821.
[40] 冉学光, 许琳, 江焕峰, 等. 二茂基氯氢化锆在有机合成中的研究进展 [J]. 有机化学, 2004, 24(6):11.
[41] MA W Y, CHEN T, LING X, et al. Metallacyclopentadienes: Synthesis, Structure and Reactivity [J]. Chemical Society Reviews, 2017, 46, 1160−1192.
[42] TAKAHASHI T, SUZUKI N. Bis(cyclopentadienyl)diphenylzirconium [M]. John Wiley & Sons, Ltd, 2001.
[43] JANTUNEN K C, SCOTT B L, KIPLINGER J L. A Comparative Study of the Reactivity of Zr(IV), Hf(IV) and Th(IV) Metallocene Complexes: Thorium Is not a Group IV Metal After All [J]. Journal of Alloys and Compounds, 2007, 444(445):363−8.
[44] BUCHWALD S L, WATSON B T, LUM R T, et al. A General Method for the Preparation of Zirconocene Complexes of Substituted Benzynes: In Situ Generation, Coupling Reactions, and Use In the Synthesis of Polyfunctionalized Aromatic Compounds [J]. Journal of the American Chemical Society, 1987, 109(23): 7137−41.
[45] BREDEAU S, ORTEGA E, DELMAS G, et al. Versatile Behavior of Conjugated Diynes with Zirconocene Reactive Species [J]. Organometallics, 2009, 28(1): 181−7.
[46] SEVEN O, QU Z-W, ZHU H, et al. Synthesis, Coupling, and Condensation Reactions of 1,2-Diborylated Benzenes: An Experimental and Quantum-Chemical Study [J]. Chemistry-a European Journal, 2012, 18(36): 11284−95.
[47] KAUFMANN D E, BOESE R, SCHEER A. 1,2-Bis(diisopropylamino)-1,2-Dihydro-1,2-Benzodiborete-A First Thermally Stable 1,2-Dihydro-1,2-Diborete [J]. Chemische Berichte, 1994, 127(11): 2349−51.
[48] LEWIS S P, TAYLOR N J, PIERS W E, et al. Isobutene Polymerization Using a Chelating Diborane Co-Initiator [J]. Journal of the American Chemical Society, 2003, 125(48): 14686−7.
[49] SCHACHT W, KAUFMANN D. Thermolysis of Arylhaloboranes; Synthesis of 1,3-Dibora- and 1,3-Borasilaindanes [J]. Journal of Organometallic Chemistry, 1987, 331(2): 139−52.
[50] WATSON M, FECHTENKöTTER A, MüLLEN K. Big Is Beautiful-"Aromaticity" Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry [J]. Chemical Reviews, 2001, 101(5): 1267−300.
[51] SCHLEYER P. Introduction: Aromaticity [J]. Chemical Reviews, 2011, 101(5): 1115−8.
[52] LIPSHUTZ, BRUCE H. Five-Membered Heteroaromatic Rings as Intermediates in Organic Synthesis [J]. Chemical Reviews, 1986, 86(5): 269−86.
[53] KRYGOWSKI T M, CYRAŃSKI M K. Structural Aspects of Aromaticity [J]. Chemical Reviews, 2001, 101(5): 1385−419.
[54] GOMES J, MALLION R B. Aromaticity and Ring Currents [J]. Chemical Reviews, 2001, 101(5): 1349−83.
[55] CHEN Z, WANNERE C S, CORMINBOEUF C, et al. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion [J]. Chemical Reviews, 2005, 105(10): 3842−88.
[56] CYRANSKI M K, SCHLEYER P, KRYGOWSKI T M, et al. Facts and Artifacts about Aromatic Stability Estimation [J]. ChemInform, 2003, 34(23): 1657−65.
[57] 华煜晖 , 张弘 , 夏海平 . 芳香性 : 历史与发展 [J]. 有机化学 , 2018, 38(1): 11−28.
[58] HEHRE, WARREN J. Homoaromatic Stability [J]. Journal of the American Chemical Society, 1973, 95(17): 5807−9.
[59] LI, X. Observation of All-Metal Aromatic Molecules [J]. Science, 2001, 291(5505): 859−61.
[60] SATTLER A, PARKIN G. Cleaving Carbon-Carbon Bonds by Inserting Tungsten into Unstrained Aromatic Rings [J]. Nature, 2010, 463(7280): 523−6.
[61] TRINAJSTI N. New Developments in Hückel Theory [J]. International Journal of Quantum Chemistry, 1977, 12(11): 469−77.
[62] 朱从青 , 朱军 , 李顺华 , 等 . 颠覆传统的全新芳香体系 -金属杂戊搭烯 /炔 [C], 全国金属有机化学学术讨论会 , 2012.
[63] BUCK H. Elementary Addition–Substitution Reactions. Hückel Approach for the Description of Aromatic and Antiaromatic Arylmethyl Cations [J]. International Journal of Quantum Chemistry, 2001, 81(1): 66−75.
[64] BRESLOW R. Antiaromaticity [J]. Accounts of Chemical Research, 1973, 6(12): 393−8.
[65] ERLENMEYER E. Studien über den Process Der Einwirkung Von Jodwasserstoff auf Glycerin [J]. Justus Liebigs Annalen Der Chemie, 1866, 139(2): 211−34.
[66] TANAKA Y, SAITO S, MORI S, et al. Metalation of Expanded Porphyrins: A Chemical Trigger Used To Produce Molecular Twisting and Möbius Aromaticity [J]. Angewandte Chemie-International Edition, 2007, 9(13):369−375.
[67] MILIORDOS E. Hückel Versus Mbius Aaromaticity: The Particle in a Cylinder Versus a Mbius Strip [J]. Physical Review A, 2010, 82(6): 062118(1−6).
[68] TANAKA T, OSUKA A. Möbius Aromatic and Antiaromatic Expanded Porphyrins [M]. Springer Japan, 2015.
[69] BERGER C, BRESLER C, DILGER U, et al. A Spontaneous Fragmentation: From the Criegee Zwitterion to Coarctate Möbius Aromaticity [J]. Angewandte Chemie-International Edition, 1998, 37(13−14): 1850−3.
[70] RZEPA, HENRY S. Mbius Aromaticity and Delocalization [J]. Chemical Reviews, 2005, 105(10): 3697−715.
[71] TORRES-VEGA J J, VáSQUEZ-ESPINAL A, CABALLERO J, et al. Minimizing the Risk of Reporting False Aromaticity and Antiaromaticity in Inorganic Heterocycles Following Magnetic Criteria [J]. Inorganic Chemistry, 2014, 53(7): 3579−85.
[72] MROZEK A, KAROLAK-WOJCIECHOWSKA J. Five-Membered Heterocycles. Part V. Impact of Heteroatoms on Aromaticity of Five-Membered Heterocycles [J]. Polish Journal of chemistry, 2007, 81(5): 721−30.
[73] BIRD C W. A New Aromaticity Index and Its Application to Five-Membered Ring Heterocycles [J]. Tetrahedron, 1985, 41(7): 1409−14.
[74] ALKORTA I, ELGUERO J. How Aromaticity Affects the Chemical and Physicochemical Properties of Heterocycles: A Computational Approach [M]. Springer Berlin Heidelberg, 2008.
[75] LEUNG K, REMPE S, SCHULTZ P, et al. Density Functional Theory and DFT+U Study of Transition Metal Porphines Adsorbed on Au Surfaces and Effects of Applied Electric Fields [J]. Journal of the American Chemical Society, 2006, 128(11): 3659−68.
[76] SCHWARTZ J L, BO L J, ABRY C. Linking the Dispersion-Focalization Theory (DFT) and the Maximum Utilization of the Available Distinctive Features (MUAF) principle in a Perception-for-Action-Control Theory (PACT) [M]. Oxford University Press, 2007.
[77] HARAM S K, KSHIRSAGAR A, GUJARATHI Y D, et al. Quantum Confinement in CdTe Quantum Dots: Investigation Through Cyclic Voltammetry Supported by Density Functional Theory (DFT) [J]. Journal of Physical Chemistry C, 2011, 115(14): 6243.
[78] PRABHAHARAN M, GUNASEKARAN S, SRINIVASAN S, et al. Molecular Structure and Vibrational Spectroscopic Investigation of Melamine Using DFT Theory Calculations [J]. Spectrochimica acta, Part A Molecular and biomolecular spectroscopy, 2014, 12(11): 59−68.
[79] PRABHAHARAN M, PRABAKARAN A R, GUNASEKARAN S, et al. Molecular Structure and Vibrational Spectroscopic Investigation of Melamine Using DFT Theory Calculations [J]. Spectrochimica acta, Part A Molecular and biomolecular spectroscopy, 2014, 123(1):392−401.
[80] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09 [J]. 2009.
[81] MOURAD M S, VARMA R S, KABALKA G W. Reduction of Alpha, Beta-Unsaturated Nitro Compounds with Boron Hydrides: a New Route to N-substituted Hydroxylamines [J]. Cheminform, 1985, 16(22): 369−374.
[82] POWER P P, MOEZZI A, PESTANA D C, et al. Multiple Bonding, π-Bonding Contributions, and Aromatic Charater in Isoelectronic Boron-Phosphorus, Boron-Arsenic, Aluminum-Nitrogen, and Zinc-Sulfur Compounds [J]. Pure and Applied Chemistry, 1991, 63(6): 103−109.
[83] ROMANESCU C, GALEEV T R, LI W L, et al. Transition-Metal-Centered Monocyclic Boron Wheel Clusters (MBn): A New Class of Aromatic Borometallic Compounds [J]. Accounts of Chemical Research, 2013, 46(2): 350−8.
[84] ALLINGER N L, SIEFERT J H. Organic quantum chemistry. XXXIII. Electronic Spectra and Rotational Barriers of Vinylborane, Allyl Cation, and Related Compounds [J]. Journal of the American Chemical Society, 1975, 97(4): 249−61.
[85] KERK S, BUDZELAAR P, EEKEREN A, et al. The Addition of Methylborylene to Acetylenes Synthesis of 1,4-Diboracyclohexa-2,5-Dienes, and of A Borirene and A Diboretene Derivative[J]. Cheminform, 1984, 3(3):271–280.
[86] VOLPIN M E, KORESHKOV Y D, DULOVA V G, et al. Three-Membered Heteroaromatic Compounds-I [J]. Tetrahedron, 1962, 18(1): 107–22.
[87] PITTMAN C U, KRESS A, KISPERT L D. INDO [Intermediate Neglect of Differential Overlap] Theoretical Studies. VII. Cyclobutadienyl Dications [J]. Journal of Organic Chemistry, 1974, 39(3): 378−82.
[88] EISCH J J, SHAFII B, RHEINGOLD A L. Bora-Aromatic System. Di-.Pi. -Methane-Like Photorearrangement of Dimesityl(mesitylethynyl)borane: Synthesis, Structure, and Aromaticity of Trimesitylborirene [J]. Cheminform, 1987, 18(34): 432−5.
[89] EISCH J J, SHAFII B, ODOM J D, et al. Bora-Aromatic Systems. Part 10. Aromatic Stabilization of the Triarylborirene Ring System by Tricoordinate Boron and Facile Ring-Opening with Tetracoordinate Boron [J]. Cheminform, 1990, 21(24): 463−8.
[90] PUES C, BERNDT A. 1-Tert-Butylborirene [J]. Angewandte Chemie-International Edition, 1984, 23(4): 313−4.
[91] PACHALY B, WEST R. Photochemical Generation of Triphenylsilylboranediyl (C6H5)3SiB: from Organosilylboranes [J]. Angewandte Chemie-International Edition, 1984, 23(6): 454−5.
[92] BRAUNSCHWEIG H, CELIK M A, DEWHURST R D, et al. Boron‐Metallated Borirenes and Bis(Borirenes) [J]. Chemistry - a European Journal, 2016, 22(25): 8596−602.
[93] BRAUNSCHWEIG H, YE Q, KRZYSTOF R, et al. Borylene-Based Functionalization of Pt–Alkynyl Complexes by Photochemical Borylene Transfer from [(OC)5CrBN(SiMe3)2] Electronic Supplementary Information (ESI) Available: Experimental Details of All X-Ray Crystal Structure Determinations [J]. Chemical Communication, 2009(45): 6979−81.
[94] BRAUNSCHWEIG H, DAMME A, DEWHURST R D, et al. Quaternizing Diboranes(4): Highly Divergent Outcomes and an Inorganic Wagner-Meerwein Rearrangement [J]. Journal of the American Chemical Society, 2013, 135(23): 8702−7.
[95] BRAUNSCHWEIG H, DEWHURST R D, RADACKI K, et al. Trihapto Ligation of a Borirene to a Single Metal Atom: A Heterocyclic Analogue of the η3‐Cyclopropenyl Ligand [J]. Angewandte Chemie-International Edition, 2014, 53(24): 6263−6266.
[96] BRAUNSCHWEIG H, HERBST T, RADACKI K, et al. Chemoselective Boron-Carbon Bond Cleavage by Hydroboration of Borirenes [J]. Chemistry-a European Journal, 2009, 15(25):8596−602.
[97] BRAUNSCHWEIG H, HERBST T, RAIS D, et al. Synthesis of Borirenes by Photochemical Borylene Transfer from [(OC)5M=BN(SiMe3)2] (M=Cr, Mo) to Alkynes [J]. Angewandte Chemie-International Edition, 2005, 44(45):7461−7463.
[98] BRAUNSCHWEIG H, YE Q, RADACKI K. Borylene-Based Functionalization of Pt-Alkynyl Complexes by Photochemical Borylene Transfer from (OC)5Cr = BN(SiMe3)2 [J]. Chemical Communication, 2009, (45): 6979−81.
[99] BRAUNSCHWEIG H, FRENKING G, KRZYSTOF R, et al. Synthesis and Electronic Structure of A Ferroborirene [J]. Angewandte Chemie-International Edition, 2007, 46(27):5215−5218.
[100] UTLEY J, VAUGHAN T A. Substituent Effects in the Electrophilic Substitution of Deactivated Systems. Part II. The Mills–Nixon Effect and the Nitration of Strained 1,2,3,4-Tetrahydroquinolinium Ions [J]. Journal of the Chemical Society Perkin Transactions, 1972, 36(15):326−329.
[101] SUTTON L E, PAULING L. A Wave-Mechanical Treatment of the Mills-Nixon Effect [J]. Transactions of the Faraday Society, 1935, 31(2): 939.
[102] BEHAN J M, DEAN F M, JOHNSTONE R A W. Photoelectron Spectra of Cyclic Aromatic Ethers: The Question of The Mills-Nixon Effect [J]. Chemischer Informationsdienst, 1976, 32(1): 167−71.
[103] STANGER M. Is The Mills Nixon Effect Real? [J]. Journal of the American Chemical Society, 1991, 113(22): 8277–80.
[104] A., STANGER. ChemInform Abstract: Is the Mills-Nixon Effect Real? [J]. Cheminform, 2010, 108(12): 356−359.
[105] HOYT H M, MICHAEL F E, BERGMAN R G. CH Bond Activation of Hydrocarbons by an Imidozirconocene Complex [J]. Journal of the American Chemical Society, 2004, 126(4): 1018−9.
[106] GERHARD E. Homogeneous Single-Component Betaine Ziegler-Natta Catalysts Derived from (Butadiene)zirconocene Precursors [J]. Accounts of Chemical Research, 2001, 34(4): 309−17.
[107] YANG X, STERN C L, MARKS T J. Cationic Zirconocene Olefin Polymerization Catalysts Based on the Organo [J]. Journal of the American Chemical Society, 1994, 116(22): 10015−31.
[108] YANG X, STERN C L, MARKS T J. Cation-Like Homogeneous Olefin Polymerization Catalysts Based Upon Zirconocene Alkyls and Tris(pentafluorophenyl)borane [J]. Journal of the American Chemical Society, 1991, 113(9): 3623−5.
[109] SPALECK W, KUEBER F, WINTER A, et al. The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalysts [J]. Organometallics, 1994, 13(3): 954−63.
[110] SWINGLE M R, AMABLE L, LAWHORN B G, et al. Synthesis and Reactivity of Substituted Cyclopentadienyl Diphenylphosphido Complexes of Zirconium(IV). X-ray Crystal Structure of [(C5H4SiMe3)2Zr(PPh2)2] [J]. Journal of the Organometallic Chemistry, 1993, 444(12): 83−9.
[111] BIELLER S, ZHANG F, BOLTE M, et al. Bitopic Bis- and Tris(1-pyrazolyl)borate Ligands: Syntheses and Structural Characterization [J]. Organometallics, 2004, 23(9): 2107−13.
[112] YAMAGUCHI S, WAKAMIYA A. Planar π-Conjugated Organoboron Compounds Having Good Electron Donating and Light-Emitting Properties, and Their Manufacture, JP2013056859A [P/OL], 2013.
[113] JANUSZEWSKI E, LORBACH A, GREWAL R, et al. Unsymmetrically Substituted 9,10-Dihydro-9,10-Diboraanthracenes as Versatile Building Blocks for Boron-Doped π-Conjugated Systems [J]. Chemistry-a European Journal, 2011, 17(45): 12696−705.
[114] KESSLER S N, NEUBURGER M, WEGNER H A. Bidentate Lewis Acids for the Activation of 1,2-Diazines - A New Mode of Catalysis [J]. European Journal of Organic Chemistry, 2011, (17): 3238−45.
[115] CHAI J, WANG C, JIA L, et al. Synthesis and Electrochemical Properties of A New Class of Boron-Containing N-Type Conjugated Polymers [J]. Synthetic Metals, 2009, 159(14): 1443−9.
[116] TAYLOR J W, MCSKIMMING A, GUZMAN C F, et al. N-Heterocyclic Carbene-Stabilized Boranthrene as a Metal-Free Platform for the Activation of Small Molecules [J]. Journal of the American Chemical Society, 2017, 139(32): 11032−5.
[117] GROTTHUSS E, DIEFENBACH M, BOLTE M, et al. Reversible Dihydrogen Activation by Reduced Aryl Boranes As Main-Group Ambiphiles [J]. Angewandte Chemie-International Edition, 2016, 55(45): 14067−71.
[118] HOFFEND C, DIEFENBACH M, JANUSZEWSKI E, et al. Effects of Boron Doping on The Structural and Optoelectronic Properties of 9,10-diarylanthracenes [J]. Dalton Transactions, 2013, 42(38): 13826−37.
[119] REUS C, WEIDLICH S, BOLTE M, et al. C-Functionalized, Air- and Water-Stable 9,10-Dihydro-9,10-Diboraanthracenes: Efficient Blue to Red Emitting Luminophores [J]. Journal of the American Chemical Society, 2013, 135(34): 12892−907.
[120] ROTH M, AHLES M, GAWRISCH C, et al. Rodlike Tetracene Derivatives [J]. Chemistry-a European Journal, 2017, 23(54): 13445−54.
[121] CHEN L S, CHEN G J, TAMBORSKI C. The Synthesis and Reactins of Ortho Bromophenyllithium [J]. Journal of the Organometallic Chemistry, 1980, 193(3): 283−92.
[122] BRAUNSCHWEIG H, BRENNER P, DEWHURST R D, et al. Unsupported Boron-Carbon σ-Coordination to Platinum As an Isolable Snapshot of σ-Bond Activation [J]. Nature Communications, 2012, (3):872.
[123] BRAUNSCHWEIG H, DAMME A, DEWHURST R, et al. σ-Donor-σ-Acceptor Plumbylene Ligands: Synergic σ-Donation Between Ambiphilic Pt(0) and Pb(II) Fragments [J]. Chemical Communications, 2012, 48(84): 10410−2.
[124] KSTER R, JOSEF H. Borverbindungen, XIV. Alkyl-1-Alkinylborane Und Ihre Komplexverbindungen Mit Tertiren Aminen [J]. Justus Liebigs Annalen der Chemie, 1968, 717(1): 1−23.
[125] GANG, FAN, YAO-XIN, et al. Co-Self-Assembled Nanoaggregates of Bodipy Amphiphiles for Dual Colour Imaging of Live Cells [J]. Chemical Communications, 2015, 51(62): 12447−12450.
[126] LOUDET A, BURGESS K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties [J]. Chemical Reviews, 2007, 107, 4891−4932.
[127] ULRICH G, GOZE C, GUARDIGLI M, et al. Pyrromethene Dialkynyl Borane Complexes for "Cascatelle" Energy Transfer and Protein Labeling [J]. Angewandte Chemie-International Edition, 2005, 44(24): 3694−8.
[128] FANG G, GERALD K, ERKER G, et al. Trisubstituted Boroles by 1,1-Carboboration [J]. Organometallics, 2015, 34(17): 4205−8.
[129] FANG G, KEHR G, DANILIUC C G, et al. Borole Formation by 1,1-Carboboration [J]. Journal of the American Chemical Society, 2014, 136(1): 68−71.
[130] GERHARD E, FANG G, TAO X, et al. The Borole Route to Reactive Pentafluorophenyl-Substituted Diboranes (4) [J]. Angewandte Chemie-International Edition, 2018, 57(2):164−169.
[131] SEBALD A. Organoborierung Von Alkinylstannanen XVI. Borol-Synthese über die Organoborierung Von Bis(alknyl)Boranen [J]. Journal of the Organometallic Chemistry, 1986, 307(2): 157−65.
[132] BRAUNSCHWEIG H, YE Q, RADACKI K. High Yield Synthesis of A Neutral and Carbonyl-Rich Terminal Arylborylene Complex [J]. Chemical Communication, 2012, 48(21): 2701−3.
[133] ROSENTHAL A J, MALLET-LADEIRA S, BOUHADIR G, et al. Persistent P-Stabilized Boryl Radicals with Bulky Substituents at Boron [J]. Synthesis, 2018, 50(18): 3671−8.
[134] GRIGSBY W J, POWER P P. Isolation and Reduction of Sterically Encumbered Arylboron Dihalides: Novel Boranediyl Insertion into C−C σ Bonds [J]. Journal of the American Chemical Society, 1996, 118(34): 7981−8.
[135] LI X W, XIE Y, SU J, et al. Synthesis and Molecular Structure of (Mes2C6H3)B(Br)N(H)[(i-Pr2C6H3)] and an ab Initio Examination of CH3BBr2 and CH3B(Br)NH2 [J]. Main Group Chemistry, 1998, 2(4): 323−7.
[136] MIYAURA N, SUZUKI A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds [J]. Chemical Reviews, 1995, 95,2457−2483.
[137] SUZUKI A. Recent Advances In the Cross-Coupling Reactions of Organoboron Derivatives with Organic Electrophiles, 1995–1998 [J]. Journal of the Organometallic Chemistry, 1999, 3(16):298−306.
[138] XU Y J, ZHANG Y F, LI J Q. Theoretical Study of the Hydroboration Reaction of Disilenes with Borane [J]. Chemical Physics Letters, 2006, 421(1−3): 36−41.
[139] MUSAEV D G, MEBEL A M, MOROKUMA K. An ab Initio Molecular Orbital Study of the Mechanism of the Rhodium(I)-Catalyzed Olefin Hydroboration Reaction [J]. Journal of the American Chemical Society, 1994, 116(23): 10693−702.
[140] DAURA-OLLER E, SEGARRA A M, POBLET J M, et al. On the Origin of Regio- and Stereoselectivity in the Rhodium-Catalyzed Vinylarenes Hydroboration Reaction [J]. Journal of Organic Chemistry, 2004, 69(8): 2669−80.
[141] CHEN C, VOSS T, FROHLICH R, et al. 1,1-Carboboration of 1-Alkynes: a Conceptual Alternative to the Hydroboration Reaction [J]. Organic Letters, 2011, 13(1): 62.
[142] ANNA M, SEGARRA R, CLAVER C, et al. How To Turn The Catalytic Asymmetric Hydroboration Reaction of Vinylarenes Into A Recyclable Process [J]. Chemistry-a European Journal, 2003, 9(1): 191−200.
[143] SU Y, KINJO R. Small Molecule Activation by Boron-Containing Heterocycles [J]. Chemical Society Reviews, 2019, 48, 3613−3659.
[144] MOU X, LIU S J, DAI C L, et al. A Class of Fascinating Optoelectronic Materials: Triarylboron Compounds [J]. Science China(Chemistry), 2010, 16(1):121−129.
[145] DHINDSA J S, MELENBACHER A, BARBON S M, et al. Altering the Optoelectronic Properties of Boron Difluoride Formazanate Dyes via Conjugation with Platinum(II)-Acetylides [J]. Dalton Transactions, 2018, 49(1):16133.
[146] MORGAN M M, NAZARI M, PICKL T, et al. Boron–Nitrogen Substituted Dihydroindeno
[1,2-b]fluorene Derivatives as Acceptors In Organic Solar Cells [J]. Chemical Communications, 2019, 55(74): 3786−3789.
[147] DAVIDE B, FRANCESCO F, DAVIDE M, et al. Boron-Nitrogen Doped Carbon Scaffolding: Organic Chemistry, Self-Assembly and Materials Applications of Borazine and Its Derivatives [J]. Chemical communications (Cambridge, England), 2015, 53(7): 3284−3289.
[148] ZHU Y, PENG A T, CARPENTER K, et al. Substituted Carborane-Appended Water-Soluble Single-Wall Carbon Nanotubes: New Approach to Boron Neutron Capture Therapy Drug Delivery [J]. Journal of the American Chemical Society, 2005, 127(27): 9875−80.
[149] WILLIAMS, ED WARD R. Carboranes and Boranes; Polyhedra and Polyhedral Fragments [J]. Inorganic Chemistry, 2002, 10(1): 210−4.
[150] WALTON J C, BRAHMI M M, MONOT J, et al. Electron Paramagnetic Resonance and Computational Studies of Radicals Derived from Boron-Substituted N-Heterocyclic Carbene Boranes [J]. Journal of the American Chemical Society, 2011, 133(26): 10312−21.
[151] VALLIANT J F, GUENTHER K J, KING A S, et al. The Medicinal Chemistry of Carboranes [J]. Coordination Chemistry Reviews, 2002, 232(1−2): 173−230.
[152] THRUSH B A. Absorption Spectra of Diatomic Radicals Containing Boron or Silicon [J]. Nature, 1960, 186(4730): 1044−1049.
[153] REED C A. ChemInform Abstract: Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids [J]. Accounts of Chemical Research, 2010, 31(26): 1256−1259.
[154] HERZOG A, CALLAHAN R P, MACDONALD C, et al. A Perfluorinated Nanosphere: Synthesis and Structure of Perfluoro‐Deca‐B‐Methyl‐Para‐Carborane [J]. Angewandte Chemie-International Edition, 2010, 40(11): 2121−3.
[155] GHANTY T K. Gold Behaves as Hydrogen: Prediction on The Existence of A New Class of Boron-Containing Radicals, AuBX (X = F, Cl, Br) [J]. The Journal of Chemical Physics, 2005, 123(24): 4412.
[156] CASTRO-RODRíGUEZ I, MEYER K. Small Molecule Activation at Uranium Coordination Complexes: Control of Reactivity via Molecular Architecture [J]. Chemical Communications (Cambridge, England), 2006, 13(3): 1353−1368.
[157] OJWACH S O, GUZEI I A, DARKWA J. (Pyrazol-1-ylmethyl) pyridine Palladium Complexes: Synthesis, Molecular Structures, and Activation of Small Molecules [J]. Journal of the Organometallic Chemistry, 2009, 694(9−10): 1393−9.
[158] DEVARAJAN D, DOUBLEDAY C E, ESS D H. Theory of Divalent Main Group H2 Activation: Electronics and Quasiclassical Trajectories [J]. Inorganic Chemistry, 2013, 52(15): 8820−33.
[159] CHAPMAN A M, HADDOW M F, WASS D F. Frustrated Lewis Pairs Beyond the Main Group: Synthesis, Reactivity, and Small Molecule Activation with Cationic Zirconocene–Phosphinoaryloxide Complexes [J]. Journal of the American Chemical Society, 2011, 133(45): 18463−78.
[160] PIERRE H, MEYER K. Activation of Small Molecules by Molecular Uranium Complexes [J]. Inorganic Chemistry, 2014, 58(2):303−415.
[161] SCHLEYER P, MAERKER C, DRANSFELD A, et al. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe [J].Journal of the American Chemical Society, 1996, 118(26): 6317−8.
[162] PéREZ-ENCABO A, PERRIO S, SLAWIN A M Z, et al. Oxidation of Alkylthio Substituted Tricarbonyl(η6-arene)chromium(0) Complexes to Alkylsulfinyl Substituted Tricarbonyl(η6-arene)chromium(0) Complexes [J]. Journal of the American Chemical Society, Perkin Transactions 1, 1994, (6): 629−42.
[163] MIYAURA N. ChemInform Abstract: Synthesis of Biaryls via the Cross‐Coupling Reaction of Arylboronic Acids [J]. ChemInform, 1999, 30(17): 123−129.
[164] ISHIYAMA T, MORI M, SUZUKI A, et al. The Palladium-Catalyzed Cross-Coupling Reaction of 9-Organothio-9-Borabicyclo
[3.3.1]nonanes with Organic Electrophiles: Synthesis of Unsymmetrical Sulfides [J]. Journal of the Organometallic Chemistry, 1997, 525(18): 225−31.
[165] BERRESHEIM A J, MüLLER M, MüLLEN K. Polyphenylene Nanostructures [J]. Chemical Reviews, 1999, 99(7): 1747−86.
[166] NICOLAOU K C, BULGER P G, SARLAH D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis [J]. Angewandte Chemie-International Edition, 2005, 44(29): 4442−89.
[167] PIERS W E, CHIVERS T. Pentafluorophenylboranes: From Obscurity to Applications [J]. Chemical Society Reviews, 1997, 26(5): 345−54.
[168] STEPHAN D W. Frustrated Lewis pairs: A New Strategy to Small Molecule Activation and Hydrogenation Catalysis [J]. Dalton Transactions, 2009, 19(17): 3129−36.
[169] PIERS W E. The Chemistry of Perfluoroaryl Boranes [M]. Academic Press. 2004: 1−76.
[170] COREY E J. Catalytic Enantioselective Diels–Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications [J]. Angewandte Chemie-International Edition, 2002, 41(10): 1650−67.
[171] ISHIHARA K, YAMAMOTO H. Arylboron Compounds as Acid Catalysts in Organic Synthetic Transformations [J]. European Journal of Organic Chemistry, 1999, 1999(3): 527−38.
[172] WADE C R, BROOMSGROVE A E J, ALDRIDGE S, et al. Fluoride Ion Complexation and Sensing Using Organoboron Compounds [J]. Chemical Reviews, 2010, 110(7): 3958−84.
[173] ENTWISTLE C D, MARDER T B. Boron Chemistry Lights the Way: Optical Properties of Molecular and Polymeric Systems [J]. Angewandte Chemie-International Edition, 2002, 41(16): 2927−31.

所在学位评定分委会
化学系
国内图书分类号
O613.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353153
专题理学院_化学系
推荐引用方式
GB/T 7714
张辉. 茂锆苯炔在合成苯并硼烯和苯基邻二硼烷中的应用研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849574-张辉-化学系.pdf(7720KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张辉]的文章
百度学术
百度学术中相似的文章
[张辉]的文章
必应学术
必应学术中相似的文章
[张辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。