[1] BOSE S K, MAO L, KUEHN L, et al. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes [J]. Chemical Reviews, 2021, 121(21): 13238−341.
[2] ZHANG Z, PENEV E S, YAKOBSON B I. Two-Dimensional Boron: Structures, Properties and Applications [J]. Chemical Society Reviews, 2017, 46(22): 6746−63.
[3] BRAUNSCHWEIG H, DEWHURST R D. Boron-Boron Multiple Bonding: From Charged to Neutral and Back Again [J]. Organometallics, 2014, 33(22): 6271−7.
[4] ASTRUC D. The 2010 Chemistry Nobel Prize to R.F. Heck, E. Negishi, and A. Suzuki for Palladium-Catalyzed Cross-Coupling Reactions [J]. Analytical & Bioanalytical Chemistry, 2011, 399(5): 1811−4.
[5] VEDEJS E. The 1979 Nobel Prize for Chemistry [J]. Science, 1980, 207(4426): 42−4.
[6] PROCACCIA I, ROSS J. The 1977 Nobel Prize in Chemistry [J]. Science, 1977, 198(4318): 716−7.
[7] 张韶光 . 锆金属杂环和氮杂半瞬烯的合成 , 结 构 , 反应与应用 : 新型氮杂环的合成 [D].北京大学 , 2013.
[8] 刘俊 . 茂锆诱导的苯衍生物和喹啉衍生物的合成研究 [D]. 天津大学 , 2010.
[9] AKAI S, PEAT A J, BUCHWALD S L. Regioselective, Directed Meta Acylation of Aromatic Compounds [J]. Journal of the American Chemical Society, 1998, 120(36): 9119−25.
[10] BUCHWALD S L, FANG Q. An Efficient One-Pot Method for the Preparation of Polysubstituted Benzothiophenes [J]. Journal of Organic Chemistry, 1989, 54(12): 2793−7.
[11] JESPERSEN K, CREMER D, DILL J D, et al. Aromaticity in Small Rings Containing Boron and Carbon, ((CH)2(BH)n, n = 1,2): Comarisons with Isoelectronic Carbocations. The Decisive Roles of Orbital Mixing and Nonbonded 1,3-Interactions in the Structures of Four-Membered Rings [J]. Journal of the American Chemical Society, 1981, 103(10): 2589−94.
[12] BYUN Y G, SAEBO S, PITTMAN C U. An Ab Initio Study of Potentially Aromatic and Antiaromatic Three-Membered Rings [J]. Journal of the American Chemical Society, 1991, 113(10): 3689−96.
[13] MAKSIC Z B, ECKERT-MAKSIC M, PFEIFER K H. Reversed Mills-Nixon Effect in Benzoborirene and Benzocyclopropenyl Cations [J]. Journal of Molecular Structure, 1993, 300(1−3): 445−53.
[14] KAISER R I, BETTINGER H F. Gas-Phase Detection of the Elusive Benzoborirene Molecule [J]. Angewandte Chemie-International Edition, 2002, 41(13): 2350−2.
[15] HAHN J, KECK C, MAICHLE-MOSSMER C, et al. Synthesis and Ring Strain of a Benzoborirene-N-Heterocyclic Carbene Adduct [J]. Chemistry-a European Journal, 2018, 24(70): 18634−7.
[16] SCHACHT W, KAUFMANN D. Thermolysis of Arylhaloboranes; Synthesis of 1,3-Dibora-and 1,3-Borasilaindanes [J]. Journal of the Organometallic Chemistry, 1987, 331(2): 139−52.
[17] NIWA T, OCHIAI H, HOSOYA T. Copper-Catalyzed Ipso-Borylation of Fluoroarenes [J]. ACS Catalysis, 2017, 7(7): 4535−41.
[18] PITTMAN C U, KRESS A, PATTERSON T B, et al. INDO [Intermediate Neglect of Differential Overlap] Theoretical Studies. VI. Cyclopropenyl, azirinyl, and diazirinyl cations [J]. Journal of Organic Chemistry, 1974, 39(3): 373−8.
[19] BRAUNSCHWEIG H, DEWHURST R D, RADACKI K, et al. Trihapto Ligation of A Borirene to A Single Metal Atom: A Heterocyclic Analogue of the η3-Cyclopropenyl Ligand [J]. Angewandte Chemie−International Edition, 2014, 53(24): 6263−6.
[20] KRASOWSKA M, BETTINGER H F. Reactivity of Borylenes toward Ethyne, Ethene, and Methane [J]. Journal of the American Chemical Society, 2012, 134(41): 17094−103.
[21] LEGARE M A, PRANCKEVICIUS C, BRAUNSCHWEIG H. Metallomimetic Chemistry of Boron [J]. Chemical Reviews, 2019, 119(14): 8231−61.
[22] EISCH J J, SHAFII B, ODOM J D, et al. ChemInform Abstract: Bora-Aromatic Systems. Part 11. Aromatic Stabilization of the Triarylborirene Ring System by Tricoordinate Boron and Facile Ring Opening with Tetracoordinate Boron [J]. Cheminform, 1990, 21(24): 1847−53.
[23] ANDERSON C E, BRAUNSCHWEIG H, DEWHURST R D. Borylene Transfer from Transition Metal Borylene Complexes [J]. Organometallics, 2008, 27(24): 6381−9.
[24] BRAUNSCHWEIG H, HERBST T, RAIS D, et al. Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes [J]. Journal of the American Chemical Society, 2009, 131(25): 8989−99.
[25] BRAUNSCHWEIG H, YE Q, RADACKI K, et al. Borylene-Based Functionalization of Iron-Alkynyl-σ-Complexes and Stepwise Reversible Metal-Boryl-to-Borirene Transformation: Synthesis, Characterization, and Density Functional Theory Studies [J]. Inorganic Chemistry, 2010, 50(1): 62−71.
[26] KRASOWSKA M, BETTINGER H F. Ring Enlargement of Three-Membered Boron Heterocycles upon Reaction with Organic π Systems: Implications for the Trapping of Borylenes [J]. Chemistry-a European Journal, 2016, 22(30): 10661−70.
[27] BUDZELAAR P H M, VAN DER KERK S M, KROGH-JESPERSEN K, et al. Dimerization of Borirene to 1,4-Diboracyclohexadiene. Structures and Stabilities of (CH)4(BH)2 Molecules [J]. Journal of the American Chemical Society, 1986, 108(14): 3960−7.
[28] BRAUNSCHWEIG H, YE Q, RADACKI K, et al. Reactivity of a Platinum-Substituted Borirene [J]. Dalton Transactions, 2011, 40(14): 3666−70.
[29] EISCH J J. Boron–Carbon Multiple Bonds. Advances in Organometallic Chemistry, 1996, 39(1): 355−391.
[30] IKAWA T, BARDER T E, BISCOE M R, et al. Pd-Catalyzed Amidations of Aryl Chlorides Using Monodentate Biaryl Phosphine Ligands: A Kinetic, Computational, and Synthetic Investigation [J]. Journal of the American Chemical Society, 2007, 129(43): 13001−7.
[31] BRAUNSCHWEIG H, DEWHURST R D, FERKINGHOFF K. Carbene-Induced Synthesis of the First Borironium Cations Using the [(η5-C5Me5)Fe(CO)2]-Anion as an Unlikely Leaving Group [J]. Chemical Communication, 2016, 52(1): 183−5.
[32] JIN Z, GU X P, QIU L L, et al. Air-Stable CpPd(NHC)Cl (NHC=N-Heterocyclic Carbene) Complexes as Highly Active Precatalysts for Kumada–Tamao–Corriu Coupling of Aryl and Heteroaryl Chlorides [J]. Cheminform, 2011, 696(4): 859−63.
[33] BRAUNSCHWEIG H, DAMME A, DEWHURST R D, et al. Electronic and Structural Effects of Stepwise Borylation and Quaternization on Borirene Aromaticity [J]. Journal of the American Chemical Society, 2013, 135(5): 1903−11.
[34] MAKSIC Z B, ECKERTMAKSIC M, PFEIFER K H. Reversed Mills-Nixon Effect in Benzoborirene and Benzocyclopropenyl Cations [J]. Journal of Molecular Structure, 1993, 300(3): 445−53.
[35] BETTINGER H F. Generation of Iodobenzoborirene, a Boraaromatic Cyclopropabenzene Derivative [J]. Chemical Communication, 2005,(21): 2756−7.
[36] BETTINGER H F. Phenylborylene: Direct Spectroscopic Characterization in Inert Gas Matrices [J]. Journal of the American Chemical Society, 2006, 128(8): 2534−5.
[37] EISCH J J. Bora-aromatic systems VI. Dehalogenation of Organoboron Dihalides in the Search for Borenes. Cheminform, 1979, 171(2): 141−153.
[38] EISCH J J, KOTOWICZ B W. Novel Organoborane Lewis Acids via Selective Boron-Tin Exchange Processes Steric Constraints to Electrophilic Initiation by the Boron Halide [J]. European Journal of Inorganic Chemistry, 2010, 1998(6): 761−9.
[39] SINDLINGER M, STRöBELE M, MAICHLE-MöSSMER C, et al. Kinetic Stabilization Allows Structural Analysis of a Benzoborirene [J]. Chemical Communication, 2022, 58, 2818−2821.
[40] 冉学光, 许琳, 江焕峰, 等. 二茂基氯氢化锆在有机合成中的研究进展 [J]. 有机化学, 2004, 24(6):11.
[41] MA W Y, CHEN T, LING X, et al. Metallacyclopentadienes: Synthesis, Structure and Reactivity [J]. Chemical Society Reviews, 2017, 46, 1160−1192.
[42] TAKAHASHI T, SUZUKI N. Bis(cyclopentadienyl)diphenylzirconium [M]. John Wiley & Sons, Ltd, 2001.
[43] JANTUNEN K C, SCOTT B L, KIPLINGER J L. A Comparative Study of the Reactivity of Zr(IV), Hf(IV) and Th(IV) Metallocene Complexes: Thorium Is not a Group IV Metal After All [J]. Journal of Alloys and Compounds, 2007, 444(445):363−8.
[44] BUCHWALD S L, WATSON B T, LUM R T, et al. A General Method for the Preparation of Zirconocene Complexes of Substituted Benzynes: In Situ Generation, Coupling Reactions, and Use In the Synthesis of Polyfunctionalized Aromatic Compounds [J]. Journal of the American Chemical Society, 1987, 109(23): 7137−41.
[45] BREDEAU S, ORTEGA E, DELMAS G, et al. Versatile Behavior of Conjugated Diynes with Zirconocene Reactive Species [J]. Organometallics, 2009, 28(1): 181−7.
[46] SEVEN O, QU Z-W, ZHU H, et al. Synthesis, Coupling, and Condensation Reactions of 1,2-Diborylated Benzenes: An Experimental and Quantum-Chemical Study [J]. Chemistry-a European Journal, 2012, 18(36): 11284−95.
[47] KAUFMANN D E, BOESE R, SCHEER A. 1,2-Bis(diisopropylamino)-1,2-Dihydro-1,2-Benzodiborete-A First Thermally Stable 1,2-Dihydro-1,2-Diborete [J]. Chemische Berichte, 1994, 127(11): 2349−51.
[48] LEWIS S P, TAYLOR N J, PIERS W E, et al. Isobutene Polymerization Using a Chelating Diborane Co-Initiator [J]. Journal of the American Chemical Society, 2003, 125(48): 14686−7.
[49] SCHACHT W, KAUFMANN D. Thermolysis of Arylhaloboranes; Synthesis of 1,3-Dibora- and 1,3-Borasilaindanes [J]. Journal of Organometallic Chemistry, 1987, 331(2): 139−52.
[50] WATSON M, FECHTENKöTTER A, MüLLEN K. Big Is Beautiful-"Aromaticity" Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry [J]. Chemical Reviews, 2001, 101(5): 1267−300.
[51] SCHLEYER P. Introduction: Aromaticity [J]. Chemical Reviews, 2011, 101(5): 1115−8.
[52] LIPSHUTZ, BRUCE H. Five-Membered Heteroaromatic Rings as Intermediates in Organic Synthesis [J]. Chemical Reviews, 1986, 86(5): 269−86.
[53] KRYGOWSKI T M, CYRAŃSKI M K. Structural Aspects of Aromaticity [J]. Chemical Reviews, 2001, 101(5): 1385−419.
[54] GOMES J, MALLION R B. Aromaticity and Ring Currents [J]. Chemical Reviews, 2001, 101(5): 1349−83.
[55] CHEN Z, WANNERE C S, CORMINBOEUF C, et al. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion [J]. Chemical Reviews, 2005, 105(10): 3842−88.
[56] CYRANSKI M K, SCHLEYER P, KRYGOWSKI T M, et al. Facts and Artifacts about Aromatic Stability Estimation [J]. ChemInform, 2003, 34(23): 1657−65.
[57] 华煜晖 , 张弘 , 夏海平 . 芳香性 : 历史与发展 [J]. 有机化学 , 2018, 38(1): 11−28.
[58] HEHRE, WARREN J. Homoaromatic Stability [J]. Journal of the American Chemical Society, 1973, 95(17): 5807−9.
[59] LI, X. Observation of All-Metal Aromatic Molecules [J]. Science, 2001, 291(5505): 859−61.
[60] SATTLER A, PARKIN G. Cleaving Carbon-Carbon Bonds by Inserting Tungsten into Unstrained Aromatic Rings [J]. Nature, 2010, 463(7280): 523−6.
[61] TRINAJSTI N. New Developments in Hückel Theory [J]. International Journal of Quantum Chemistry, 1977, 12(11): 469−77.
[62] 朱从青 , 朱军 , 李顺华 , 等 . 颠覆传统的全新芳香体系 -金属杂戊搭烯 /炔 [C], 全国金属有机化学学术讨论会 , 2012.
[63] BUCK H. Elementary Addition–Substitution Reactions. Hückel Approach for the Description of Aromatic and Antiaromatic Arylmethyl Cations [J]. International Journal of Quantum Chemistry, 2001, 81(1): 66−75.
[64] BRESLOW R. Antiaromaticity [J]. Accounts of Chemical Research, 1973, 6(12): 393−8.
[65] ERLENMEYER E. Studien über den Process Der Einwirkung Von Jodwasserstoff auf Glycerin [J]. Justus Liebigs Annalen Der Chemie, 1866, 139(2): 211−34.
[66] TANAKA Y, SAITO S, MORI S, et al. Metalation of Expanded Porphyrins: A Chemical Trigger Used To Produce Molecular Twisting and Möbius Aromaticity [J]. Angewandte Chemie-International Edition, 2007, 9(13):369−375.
[67] MILIORDOS E. Hückel Versus Mbius Aaromaticity: The Particle in a Cylinder Versus a Mbius Strip [J]. Physical Review A, 2010, 82(6): 062118(1−6).
[68] TANAKA T, OSUKA A. Möbius Aromatic and Antiaromatic Expanded Porphyrins [M]. Springer Japan, 2015.
[69] BERGER C, BRESLER C, DILGER U, et al. A Spontaneous Fragmentation: From the Criegee Zwitterion to Coarctate Möbius Aromaticity [J]. Angewandte Chemie-International Edition, 1998, 37(13−14): 1850−3.
[70] RZEPA, HENRY S. Mbius Aromaticity and Delocalization [J]. Chemical Reviews, 2005, 105(10): 3697−715.
[71] TORRES-VEGA J J, VáSQUEZ-ESPINAL A, CABALLERO J, et al. Minimizing the Risk of Reporting False Aromaticity and Antiaromaticity in Inorganic Heterocycles Following Magnetic Criteria [J]. Inorganic Chemistry, 2014, 53(7): 3579−85.
[72] MROZEK A, KAROLAK-WOJCIECHOWSKA J. Five-Membered Heterocycles. Part V. Impact of Heteroatoms on Aromaticity of Five-Membered Heterocycles [J]. Polish Journal of chemistry, 2007, 81(5): 721−30.
[73] BIRD C W. A New Aromaticity Index and Its Application to Five-Membered Ring Heterocycles [J]. Tetrahedron, 1985, 41(7): 1409−14.
[74] ALKORTA I, ELGUERO J. How Aromaticity Affects the Chemical and Physicochemical Properties of Heterocycles: A Computational Approach [M]. Springer Berlin Heidelberg, 2008.
[75] LEUNG K, REMPE S, SCHULTZ P, et al. Density Functional Theory and DFT+U Study of Transition Metal Porphines Adsorbed on Au Surfaces and Effects of Applied Electric Fields [J]. Journal of the American Chemical Society, 2006, 128(11): 3659−68.
[76] SCHWARTZ J L, BO L J, ABRY C. Linking the Dispersion-Focalization Theory (DFT) and the Maximum Utilization of the Available Distinctive Features (MUAF) principle in a Perception-for-Action-Control Theory (PACT) [M]. Oxford University Press, 2007.
[77] HARAM S K, KSHIRSAGAR A, GUJARATHI Y D, et al. Quantum Confinement in CdTe Quantum Dots: Investigation Through Cyclic Voltammetry Supported by Density Functional Theory (DFT) [J]. Journal of Physical Chemistry C, 2011, 115(14): 6243.
[78] PRABHAHARAN M, GUNASEKARAN S, SRINIVASAN S, et al. Molecular Structure and Vibrational Spectroscopic Investigation of Melamine Using DFT Theory Calculations [J]. Spectrochimica acta, Part A Molecular and biomolecular spectroscopy, 2014, 12(11): 59−68.
[79] PRABHAHARAN M, PRABAKARAN A R, GUNASEKARAN S, et al. Molecular Structure and Vibrational Spectroscopic Investigation of Melamine Using DFT Theory Calculations [J]. Spectrochimica acta, Part A Molecular and biomolecular spectroscopy, 2014, 123(1):392−401.
[80] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09 [J]. 2009.
[81] MOURAD M S, VARMA R S, KABALKA G W. Reduction of Alpha, Beta-Unsaturated Nitro Compounds with Boron Hydrides: a New Route to N-substituted Hydroxylamines [J]. Cheminform, 1985, 16(22): 369−374.
[82] POWER P P, MOEZZI A, PESTANA D C, et al. Multiple Bonding, π-Bonding Contributions, and Aromatic Charater in Isoelectronic Boron-Phosphorus, Boron-Arsenic, Aluminum-Nitrogen, and Zinc-Sulfur Compounds [J]. Pure and Applied Chemistry, 1991, 63(6): 103−109.
[83] ROMANESCU C, GALEEV T R, LI W L, et al. Transition-Metal-Centered Monocyclic Boron Wheel Clusters (MBn): A New Class of Aromatic Borometallic Compounds [J]. Accounts of Chemical Research, 2013, 46(2): 350−8.
[84] ALLINGER N L, SIEFERT J H. Organic quantum chemistry. XXXIII. Electronic Spectra and Rotational Barriers of Vinylborane, Allyl Cation, and Related Compounds [J]. Journal of the American Chemical Society, 1975, 97(4): 249−61.
[85] KERK S, BUDZELAAR P, EEKEREN A, et al. The Addition of Methylborylene to Acetylenes Synthesis of 1,4-Diboracyclohexa-2,5-Dienes, and of A Borirene and A Diboretene Derivative[J]. Cheminform, 1984, 3(3):271–280.
[86] VOLPIN M E, KORESHKOV Y D, DULOVA V G, et al. Three-Membered Heteroaromatic Compounds-I [J]. Tetrahedron, 1962, 18(1): 107–22.
[87] PITTMAN C U, KRESS A, KISPERT L D. INDO [Intermediate Neglect of Differential Overlap] Theoretical Studies. VII. Cyclobutadienyl Dications [J]. Journal of Organic Chemistry, 1974, 39(3): 378−82.
[88] EISCH J J, SHAFII B, RHEINGOLD A L. Bora-Aromatic System. Di-.Pi. -Methane-Like Photorearrangement of Dimesityl(mesitylethynyl)borane: Synthesis, Structure, and Aromaticity of Trimesitylborirene [J]. Cheminform, 1987, 18(34): 432−5.
[89] EISCH J J, SHAFII B, ODOM J D, et al. Bora-Aromatic Systems. Part 10. Aromatic Stabilization of the Triarylborirene Ring System by Tricoordinate Boron and Facile Ring-Opening with Tetracoordinate Boron [J]. Cheminform, 1990, 21(24): 463−8.
[90] PUES C, BERNDT A. 1-Tert-Butylborirene [J]. Angewandte Chemie-International Edition, 1984, 23(4): 313−4.
[91] PACHALY B, WEST R. Photochemical Generation of Triphenylsilylboranediyl (C6H5)3SiB: from Organosilylboranes [J]. Angewandte Chemie-International Edition, 1984, 23(6): 454−5.
[92] BRAUNSCHWEIG H, CELIK M A, DEWHURST R D, et al. Boron‐Metallated Borirenes and Bis(Borirenes) [J]. Chemistry - a European Journal, 2016, 22(25): 8596−602.
[93] BRAUNSCHWEIG H, YE Q, KRZYSTOF R, et al. Borylene-Based Functionalization of Pt–Alkynyl Complexes by Photochemical Borylene Transfer from [(OC)5CrBN(SiMe3)2] Electronic Supplementary Information (ESI) Available: Experimental Details of All X-Ray Crystal Structure Determinations [J]. Chemical Communication, 2009(45): 6979−81.
[94] BRAUNSCHWEIG H, DAMME A, DEWHURST R D, et al. Quaternizing Diboranes(4): Highly Divergent Outcomes and an Inorganic Wagner-Meerwein Rearrangement [J]. Journal of the American Chemical Society, 2013, 135(23): 8702−7.
[95] BRAUNSCHWEIG H, DEWHURST R D, RADACKI K, et al. Trihapto Ligation of a Borirene to a Single Metal Atom: A Heterocyclic Analogue of the η3‐Cyclopropenyl Ligand [J]. Angewandte Chemie-International Edition, 2014, 53(24): 6263−6266.
[96] BRAUNSCHWEIG H, HERBST T, RADACKI K, et al. Chemoselective Boron-Carbon Bond Cleavage by Hydroboration of Borirenes [J]. Chemistry-a European Journal, 2009, 15(25):8596−602.
[97] BRAUNSCHWEIG H, HERBST T, RAIS D, et al. Synthesis of Borirenes by Photochemical Borylene Transfer from [(OC)5M=BN(SiMe3)2] (M=Cr, Mo) to Alkynes [J]. Angewandte Chemie-International Edition, 2005, 44(45):7461−7463.
[98] BRAUNSCHWEIG H, YE Q, RADACKI K. Borylene-Based Functionalization of Pt-Alkynyl Complexes by Photochemical Borylene Transfer from (OC)5Cr = BN(SiMe3)2 [J]. Chemical Communication, 2009, (45): 6979−81.
[99] BRAUNSCHWEIG H, FRENKING G, KRZYSTOF R, et al. Synthesis and Electronic Structure of A Ferroborirene [J]. Angewandte Chemie-International Edition, 2007, 46(27):5215−5218.
[100] UTLEY J, VAUGHAN T A. Substituent Effects in the Electrophilic Substitution of Deactivated Systems. Part II. The Mills–Nixon Effect and the Nitration of Strained 1,2,3,4-Tetrahydroquinolinium Ions [J]. Journal of the Chemical Society Perkin Transactions, 1972, 36(15):326−329.
[101] SUTTON L E, PAULING L. A Wave-Mechanical Treatment of the Mills-Nixon Effect [J]. Transactions of the Faraday Society, 1935, 31(2): 939.
[102] BEHAN J M, DEAN F M, JOHNSTONE R A W. Photoelectron Spectra of Cyclic Aromatic Ethers: The Question of The Mills-Nixon Effect [J]. Chemischer Informationsdienst, 1976, 32(1): 167−71.
[103] STANGER M. Is The Mills Nixon Effect Real? [J]. Journal of the American Chemical Society, 1991, 113(22): 8277–80.
[104] A., STANGER. ChemInform Abstract: Is the Mills-Nixon Effect Real? [J]. Cheminform, 2010, 108(12): 356−359.
[105] HOYT H M, MICHAEL F E, BERGMAN R G. CH Bond Activation of Hydrocarbons by an Imidozirconocene Complex [J]. Journal of the American Chemical Society, 2004, 126(4): 1018−9.
[106] GERHARD E. Homogeneous Single-Component Betaine Ziegler-Natta Catalysts Derived from (Butadiene)zirconocene Precursors [J]. Accounts of Chemical Research, 2001, 34(4): 309−17.
[107] YANG X, STERN C L, MARKS T J. Cationic Zirconocene Olefin Polymerization Catalysts Based on the Organo [J]. Journal of the American Chemical Society, 1994, 116(22): 10015−31.
[108] YANG X, STERN C L, MARKS T J. Cation-Like Homogeneous Olefin Polymerization Catalysts Based Upon Zirconocene Alkyls and Tris(pentafluorophenyl)borane [J]. Journal of the American Chemical Society, 1991, 113(9): 3623−5.
[109] SPALECK W, KUEBER F, WINTER A, et al. The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalysts [J]. Organometallics, 1994, 13(3): 954−63.
[110] SWINGLE M R, AMABLE L, LAWHORN B G, et al. Synthesis and Reactivity of Substituted Cyclopentadienyl Diphenylphosphido Complexes of Zirconium(IV). X-ray Crystal Structure of [(C5H4SiMe3)2Zr(PPh2)2] [J]. Journal of the Organometallic Chemistry, 1993, 444(12): 83−9.
[111] BIELLER S, ZHANG F, BOLTE M, et al. Bitopic Bis- and Tris(1-pyrazolyl)borate Ligands: Syntheses and Structural Characterization [J]. Organometallics, 2004, 23(9): 2107−13.
[112] YAMAGUCHI S, WAKAMIYA A. Planar π-Conjugated Organoboron Compounds Having Good Electron Donating and Light-Emitting Properties, and Their Manufacture, JP2013056859A [P/OL], 2013.
[113] JANUSZEWSKI E, LORBACH A, GREWAL R, et al. Unsymmetrically Substituted 9,10-Dihydro-9,10-Diboraanthracenes as Versatile Building Blocks for Boron-Doped π-Conjugated Systems [J]. Chemistry-a European Journal, 2011, 17(45): 12696−705.
[114] KESSLER S N, NEUBURGER M, WEGNER H A. Bidentate Lewis Acids for the Activation of 1,2-Diazines - A New Mode of Catalysis [J]. European Journal of Organic Chemistry, 2011, (17): 3238−45.
[115] CHAI J, WANG C, JIA L, et al. Synthesis and Electrochemical Properties of A New Class of Boron-Containing N-Type Conjugated Polymers [J]. Synthetic Metals, 2009, 159(14): 1443−9.
[116] TAYLOR J W, MCSKIMMING A, GUZMAN C F, et al. N-Heterocyclic Carbene-Stabilized Boranthrene as a Metal-Free Platform for the Activation of Small Molecules [J]. Journal of the American Chemical Society, 2017, 139(32): 11032−5.
[117] GROTTHUSS E, DIEFENBACH M, BOLTE M, et al. Reversible Dihydrogen Activation by Reduced Aryl Boranes As Main-Group Ambiphiles [J]. Angewandte Chemie-International Edition, 2016, 55(45): 14067−71.
[118] HOFFEND C, DIEFENBACH M, JANUSZEWSKI E, et al. Effects of Boron Doping on The Structural and Optoelectronic Properties of 9,10-diarylanthracenes [J]. Dalton Transactions, 2013, 42(38): 13826−37.
[119] REUS C, WEIDLICH S, BOLTE M, et al. C-Functionalized, Air- and Water-Stable 9,10-Dihydro-9,10-Diboraanthracenes: Efficient Blue to Red Emitting Luminophores [J]. Journal of the American Chemical Society, 2013, 135(34): 12892−907.
[120] ROTH M, AHLES M, GAWRISCH C, et al. Rodlike Tetracene Derivatives [J]. Chemistry-a European Journal, 2017, 23(54): 13445−54.
[121] CHEN L S, CHEN G J, TAMBORSKI C. The Synthesis and Reactins of Ortho Bromophenyllithium [J]. Journal of the Organometallic Chemistry, 1980, 193(3): 283−92.
[122] BRAUNSCHWEIG H, BRENNER P, DEWHURST R D, et al. Unsupported Boron-Carbon σ-Coordination to Platinum As an Isolable Snapshot of σ-Bond Activation [J]. Nature Communications, 2012, (3):872.
[123] BRAUNSCHWEIG H, DAMME A, DEWHURST R, et al. σ-Donor-σ-Acceptor Plumbylene Ligands: Synergic σ-Donation Between Ambiphilic Pt(0) and Pb(II) Fragments [J]. Chemical Communications, 2012, 48(84): 10410−2.
[124] KSTER R, JOSEF H. Borverbindungen, XIV. Alkyl-1-Alkinylborane Und Ihre Komplexverbindungen Mit Tertiren Aminen [J]. Justus Liebigs Annalen der Chemie, 1968, 717(1): 1−23.
[125] GANG, FAN, YAO-XIN, et al. Co-Self-Assembled Nanoaggregates of Bodipy Amphiphiles for Dual Colour Imaging of Live Cells [J]. Chemical Communications, 2015, 51(62): 12447−12450.
[126] LOUDET A, BURGESS K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties [J]. Chemical Reviews, 2007, 107, 4891−4932.
[127] ULRICH G, GOZE C, GUARDIGLI M, et al. Pyrromethene Dialkynyl Borane Complexes for "Cascatelle" Energy Transfer and Protein Labeling [J]. Angewandte Chemie-International Edition, 2005, 44(24): 3694−8.
[128] FANG G, GERALD K, ERKER G, et al. Trisubstituted Boroles by 1,1-Carboboration [J]. Organometallics, 2015, 34(17): 4205−8.
[129] FANG G, KEHR G, DANILIUC C G, et al. Borole Formation by 1,1-Carboboration [J]. Journal of the American Chemical Society, 2014, 136(1): 68−71.
[130] GERHARD E, FANG G, TAO X, et al. The Borole Route to Reactive Pentafluorophenyl-Substituted Diboranes (4) [J]. Angewandte Chemie-International Edition, 2018, 57(2):164−169.
[131] SEBALD A. Organoborierung Von Alkinylstannanen XVI. Borol-Synthese über die Organoborierung Von Bis(alknyl)Boranen [J]. Journal of the Organometallic Chemistry, 1986, 307(2): 157−65.
[132] BRAUNSCHWEIG H, YE Q, RADACKI K. High Yield Synthesis of A Neutral and Carbonyl-Rich Terminal Arylborylene Complex [J]. Chemical Communication, 2012, 48(21): 2701−3.
[133] ROSENTHAL A J, MALLET-LADEIRA S, BOUHADIR G, et al. Persistent P-Stabilized Boryl Radicals with Bulky Substituents at Boron [J]. Synthesis, 2018, 50(18): 3671−8.
[134] GRIGSBY W J, POWER P P. Isolation and Reduction of Sterically Encumbered Arylboron Dihalides: Novel Boranediyl Insertion into C−C σ Bonds [J]. Journal of the American Chemical Society, 1996, 118(34): 7981−8.
[135] LI X W, XIE Y, SU J, et al. Synthesis and Molecular Structure of (Mes2C6H3)B(Br)N(H)[(i-Pr2C6H3)] and an ab Initio Examination of CH3BBr2 and CH3B(Br)NH2 [J]. Main Group Chemistry, 1998, 2(4): 323−7.
[136] MIYAURA N, SUZUKI A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds [J]. Chemical Reviews, 1995, 95,2457−2483.
[137] SUZUKI A. Recent Advances In the Cross-Coupling Reactions of Organoboron Derivatives with Organic Electrophiles, 1995–1998 [J]. Journal of the Organometallic Chemistry, 1999, 3(16):298−306.
[138] XU Y J, ZHANG Y F, LI J Q. Theoretical Study of the Hydroboration Reaction of Disilenes with Borane [J]. Chemical Physics Letters, 2006, 421(1−3): 36−41.
[139] MUSAEV D G, MEBEL A M, MOROKUMA K. An ab Initio Molecular Orbital Study of the Mechanism of the Rhodium(I)-Catalyzed Olefin Hydroboration Reaction [J]. Journal of the American Chemical Society, 1994, 116(23): 10693−702.
[140] DAURA-OLLER E, SEGARRA A M, POBLET J M, et al. On the Origin of Regio- and Stereoselectivity in the Rhodium-Catalyzed Vinylarenes Hydroboration Reaction [J]. Journal of Organic Chemistry, 2004, 69(8): 2669−80.
[141] CHEN C, VOSS T, FROHLICH R, et al. 1,1-Carboboration of 1-Alkynes: a Conceptual Alternative to the Hydroboration Reaction [J]. Organic Letters, 2011, 13(1): 62.
[142] ANNA M, SEGARRA R, CLAVER C, et al. How To Turn The Catalytic Asymmetric Hydroboration Reaction of Vinylarenes Into A Recyclable Process [J]. Chemistry-a European Journal, 2003, 9(1): 191−200.
[143] SU Y, KINJO R. Small Molecule Activation by Boron-Containing Heterocycles [J]. Chemical Society Reviews, 2019, 48, 3613−3659.
[144] MOU X, LIU S J, DAI C L, et al. A Class of Fascinating Optoelectronic Materials: Triarylboron Compounds [J]. Science China(Chemistry), 2010, 16(1):121−129.
[145] DHINDSA J S, MELENBACHER A, BARBON S M, et al. Altering the Optoelectronic Properties of Boron Difluoride Formazanate Dyes via Conjugation with Platinum(II)-Acetylides [J]. Dalton Transactions, 2018, 49(1):16133.
[146] MORGAN M M, NAZARI M, PICKL T, et al. Boron–Nitrogen Substituted Dihydroindeno
[1,2-b]fluorene Derivatives as Acceptors In Organic Solar Cells [J]. Chemical Communications, 2019, 55(74): 3786−3789.
[147] DAVIDE B, FRANCESCO F, DAVIDE M, et al. Boron-Nitrogen Doped Carbon Scaffolding: Organic Chemistry, Self-Assembly and Materials Applications of Borazine and Its Derivatives [J]. Chemical communications (Cambridge, England), 2015, 53(7): 3284−3289.
[148] ZHU Y, PENG A T, CARPENTER K, et al. Substituted Carborane-Appended Water-Soluble Single-Wall Carbon Nanotubes: New Approach to Boron Neutron Capture Therapy Drug Delivery [J]. Journal of the American Chemical Society, 2005, 127(27): 9875−80.
[149] WILLIAMS, ED WARD R. Carboranes and Boranes; Polyhedra and Polyhedral Fragments [J]. Inorganic Chemistry, 2002, 10(1): 210−4.
[150] WALTON J C, BRAHMI M M, MONOT J, et al. Electron Paramagnetic Resonance and Computational Studies of Radicals Derived from Boron-Substituted N-Heterocyclic Carbene Boranes [J]. Journal of the American Chemical Society, 2011, 133(26): 10312−21.
[151] VALLIANT J F, GUENTHER K J, KING A S, et al. The Medicinal Chemistry of Carboranes [J]. Coordination Chemistry Reviews, 2002, 232(1−2): 173−230.
[152] THRUSH B A. Absorption Spectra of Diatomic Radicals Containing Boron or Silicon [J]. Nature, 1960, 186(4730): 1044−1049.
[153] REED C A. ChemInform Abstract: Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids [J]. Accounts of Chemical Research, 2010, 31(26): 1256−1259.
[154] HERZOG A, CALLAHAN R P, MACDONALD C, et al. A Perfluorinated Nanosphere: Synthesis and Structure of Perfluoro‐Deca‐B‐Methyl‐Para‐Carborane [J]. Angewandte Chemie-International Edition, 2010, 40(11): 2121−3.
[155] GHANTY T K. Gold Behaves as Hydrogen: Prediction on The Existence of A New Class of Boron-Containing Radicals, AuBX (X = F, Cl, Br) [J]. The Journal of Chemical Physics, 2005, 123(24): 4412.
[156] CASTRO-RODRíGUEZ I, MEYER K. Small Molecule Activation at Uranium Coordination Complexes: Control of Reactivity via Molecular Architecture [J]. Chemical Communications (Cambridge, England), 2006, 13(3): 1353−1368.
[157] OJWACH S O, GUZEI I A, DARKWA J. (Pyrazol-1-ylmethyl) pyridine Palladium Complexes: Synthesis, Molecular Structures, and Activation of Small Molecules [J]. Journal of the Organometallic Chemistry, 2009, 694(9−10): 1393−9.
[158] DEVARAJAN D, DOUBLEDAY C E, ESS D H. Theory of Divalent Main Group H2 Activation: Electronics and Quasiclassical Trajectories [J]. Inorganic Chemistry, 2013, 52(15): 8820−33.
[159] CHAPMAN A M, HADDOW M F, WASS D F. Frustrated Lewis Pairs Beyond the Main Group: Synthesis, Reactivity, and Small Molecule Activation with Cationic Zirconocene–Phosphinoaryloxide Complexes [J]. Journal of the American Chemical Society, 2011, 133(45): 18463−78.
[160] PIERRE H, MEYER K. Activation of Small Molecules by Molecular Uranium Complexes [J]. Inorganic Chemistry, 2014, 58(2):303−415.
[161] SCHLEYER P, MAERKER C, DRANSFELD A, et al. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe [J].Journal of the American Chemical Society, 1996, 118(26): 6317−8.
[162] PéREZ-ENCABO A, PERRIO S, SLAWIN A M Z, et al. Oxidation of Alkylthio Substituted Tricarbonyl(η6-arene)chromium(0) Complexes to Alkylsulfinyl Substituted Tricarbonyl(η6-arene)chromium(0) Complexes [J]. Journal of the American Chemical Society, Perkin Transactions 1, 1994, (6): 629−42.
[163] MIYAURA N. ChemInform Abstract: Synthesis of Biaryls via the Cross‐Coupling Reaction of Arylboronic Acids [J]. ChemInform, 1999, 30(17): 123−129.
[164] ISHIYAMA T, MORI M, SUZUKI A, et al. The Palladium-Catalyzed Cross-Coupling Reaction of 9-Organothio-9-Borabicyclo
[3.3.1]nonanes with Organic Electrophiles: Synthesis of Unsymmetrical Sulfides [J]. Journal of the Organometallic Chemistry, 1997, 525(18): 225−31.
[165] BERRESHEIM A J, MüLLER M, MüLLEN K. Polyphenylene Nanostructures [J]. Chemical Reviews, 1999, 99(7): 1747−86.
[166] NICOLAOU K C, BULGER P G, SARLAH D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis [J]. Angewandte Chemie-International Edition, 2005, 44(29): 4442−89.
[167] PIERS W E, CHIVERS T. Pentafluorophenylboranes: From Obscurity to Applications [J]. Chemical Society Reviews, 1997, 26(5): 345−54.
[168] STEPHAN D W. Frustrated Lewis pairs: A New Strategy to Small Molecule Activation and Hydrogenation Catalysis [J]. Dalton Transactions, 2009, 19(17): 3129−36.
[169] PIERS W E. The Chemistry of Perfluoroaryl Boranes [M]. Academic Press. 2004: 1−76.
[170] COREY E J. Catalytic Enantioselective Diels–Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications [J]. Angewandte Chemie-International Edition, 2002, 41(10): 1650−67.
[171] ISHIHARA K, YAMAMOTO H. Arylboron Compounds as Acid Catalysts in Organic Synthetic Transformations [J]. European Journal of Organic Chemistry, 1999, 1999(3): 527−38.
[172] WADE C R, BROOMSGROVE A E J, ALDRIDGE S, et al. Fluoride Ion Complexation and Sensing Using Organoboron Compounds [J]. Chemical Reviews, 2010, 110(7): 3958−84.
[173] ENTWISTLE C D, MARDER T B. Boron Chemistry Lights the Way: Optical Properties of Molecular and Polymeric Systems [J]. Angewandte Chemie-International Edition, 2002, 41(16): 2927−31.
修改评论