[1] GATTESCHI D, SESSOLI R, VILLAIN R. Molecular Nanomagnets[M]. UK: Clarendon Press, Oxford, 2006.
[2] MALRIEU J P, CABALLOL R, CALZADO C J, et al. Magnetic interactions in molecules and highly correlated materials: Physical content, analytical derivation, and rigorous extraction of magnetic hamiltonians[J]. Chemical Reviews, 2014, 114(1): 429-492.
[3] STEENBOCK T, SHULTZ D A, KIRK M L, et al. Influence of radical bridges on electron spin coupling[J]. Journal of Physical Chemistry A, 2017, 121(1): 216-225.
[4] PERLEPE P, OYARZABAL I, MAILMAN A, et al. Metal-organic magnets with large coercivity and ordering temperatures up to 242 °C[J]. Science, 2020, 370(6516):587-592.
[5] RINEHART J D, FANG M, EVANS W J, et al. A N_2^(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K[J]. Journal of the American Chemical Society, 2011, 133(36): 14236-14239.
[6] MILLER J S, CALABRESE J C, ROMMELMANN H, et al. Ferromagnetic behavior of [Fe(C5Me5)2]•+[TCNE]•-.Structural and magnetic characterization of decamethylferrocenium tetracyanoethenide, [Fe(C5Me5)2]•+[TCNE]•-MeCN and decamethylferrocenium pentacyanopropenide, [Fe(C5Me5)2]•+[C3(CN)5]•-[J]. Journal of the American Chemical Society, 1987, 109(3): 769-781.
[7] MANRIQUEZ J M, YEE G T, MCLEAN R S, et al. A room-temperature molecular/organic-based magnet[J]. Science, 1991, 252: 1415-1417.
[8] CANESCHI A, GATTESCHI D, RENARD J P, et al. Magnetic coupling in zero- and one-dimensional magnetic systems formed by nickel(II) and nitronyl nitroxides. Magnetic phase transition of a ferrimagnetic chain[J]. Inorganic Chemistry, 1989, 28(15):2940-2944.
[9] CANESCHI A, GATTESCHI D, SESSOLI R, et al. Toward molecular magnets: the metal-radical approach[J]. Accounts of Chemical Research, 1989. 22(11): 392-398.
[10] OKAMURA Y, CHIBA S, NOGAMI T, et al. Giant coercivity in a one-dimensional cobalt-radical coordination magnet[J]. Journal of the American Chemical Society, 2008, 130(1): 24-5.
[11] LIU X, FENG X, MEIHAUS K R, et al. Coercive fields above 6t in two cobalt(ii)–radical chain compounds[J]. Angewandte Chemie International Edition, 2020, 59: 10610-10618.
[12] PEDERSEN K S, PANAGIOTA P, AUBREY M L, et al. Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry[J]. Nature Chemistry, 2018, 10: 1056-1061.
[13] GOODWIN C, ORTU F, RETA D, et al. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium[J]. Nature, 2017, 548(7668): 439-442.
[14] GUO F S, DAY, B M, CHEN Y C, et al. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet[J]. Science, 2018, 362(6421): 1400-1403.
[15] WOODRUFF D N, WINPENNY R E, LAYFIELD R A. Lanthanide single-molecule magnets[J]. Chemical Reviews, 2013, 113(7): 5110-5148.
[16] FROST J M, HARRIMAN K, MURUGESU M. The rise of 3-d single-ion magnets in molecular magnetism: Towards materials from molecules?[J]. Chemical Science, 2015, 7(4): 2470-2491.
[17] LAYFIELD R A, MCDOUALL J J W, SULWAY S A, et al. Influence of the N-bridging ligand on magnetic relaxation in an organometallic dysprosium single-molecule magnet[J]. Chemistry - A European Journal, 2010, 16: 4442-4446.
[18] SULWAY S A, LAYFIELD R A, TUNA F W. et al. Single-molecule magnetism in cyclopentadienyl-dysprosium chlorides[J]. Chemical Communications, 2012, 48: 1508-1510.
[19] TUNA F, SMITH C A, BODENSTEINER M, et al. A high anisotropy barrier in a sulfur-bridged organodysprosium single-molecule magnet[J]. Angewandte Chemie International Edition, 2012, 51: 6976-6980.
[20] GUO Y N, XU G F, WERNSDORFER W, et al. Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet[J]. Journal of the American Chemical Society, 2011, 133(31):11948-51.
[21] XIONG J, DING H Y, MENG Y S, et al. Hydroxide-bridged five-coordinate DyIII single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers[J]. Chemical Science, 2017, 8: 1288-1294.
[22] DEMIR S, ZADROZNY J M, NIPPE M, et al. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes[J]. Journal of the American Chemical Society, 2012, 134(45): 18546-18549.
[23] DEMIR S, NIPPE M, GONZALEZ M, et al. Exchange coupling and magnetic blocking in dilanthanide complexes bridged by the multi-electron redox-active ligand 2,3,5,6-tetra(2-pyridyl)pyrazine[J]. Chemical Science, 2014, 5(12): 4701-4711.
[24] GOULD C A, DARAGO L E, GONZALEZ M I, et al. A trinuclear radical-bridged lanthanide single-molecule magnet[J]. Angewandte Chemie, 2017, 56(34): 10103-10107.
[25] STETSIUK O, ABHERVE A, AVARVARI N. 1,2,4,5-Tetrazine based ligands and complexes[J]. Dalton Transactions, 2020, 49(18): 5759-5777.
[26] MAVRAGANI N, KITOS A A, BRUSSO J L, et al. Enhancing magnetic communication between metal centres: The role of s-tetrazine based radicals as ligands[J]. Chemistry - A European Journal, 2021, 27(16): 5091-5106.
[27] MIN D J, MIOMANDRE F, AUDEBERT P, et al. s-Tetrazines as a new electrode-active material for secondary batteries[J]. ChemSusChem, 2019, 12(2): 503-510.
[28] GLEITER R, SCHEHLMANN V, SPANGET-LARSEN J, et al. PE spectra of disubstituted 1,2,4,5-tetrazines[J]. The Journal of Organic Chemistry, 1988, 53(24): 5756-5762.
[29] CLAVIER G, AUDEBERT P. s-Tetrazines as building blocks for new functional molecules and molecular materials[J]. Chemical Reviews, 2010, 110(6): 3299-3314.
[30] MAVRAGANI N, KITOS A A, BRUSSO J L, et al. Enhancing magnetic communication between metal centres: The role of s-tetrazine based radicals as ligands[J]. Chemistry - A European Journal, 2021, 27(16): 5091-5106.
[31] SCHWACH M, HAUSEN H-D, KAIM W. The First crystal structure of a metal-stabilized tetrazine anion radical: Formation of a dicopper complex through self-assembly in a comproportionation reaction[J]. Inorganic Chemistry, 1999, 38(10): 2242-2243.
[32] GLOCKLE M, HUBLER K, KUMMERER H J, et al. Dicopper(I) complexes with reduced states of 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine: crystal structures and spectroscopic properties of the free ligand, a radical species, and a complex of the 1,4-dihydro form[J]. Inorganic Chemistry, 2001, 40(10): 2263-2269.
[33] CAMPOS-FERNáNDEZ C S, CLéRAC R, DUNBAR K R. A one-pot, high-yield synthesis of a paramagnetic nickel square from divergent precursors by anion template assembly[J]. Angewandte Chemie International Edition, 1999, 38(23): 3477-3479.
[34] CAMPOS-FERNANDEZ C S, CLERAC R, KOOMEN J M, et al. Fine-tuning the ring-size of metallacyclophanes: a rational approach to molecular pentagons[J]. Journal of the American Chemical Society, 2001, 123(4): 773-774.
[35] CAMPOS-FERNANDEZ C S, SCHOTTEL B L, CHIFOTIDES H T, et al. Anion template effect on the self-assembly and interconversion of metallacyclophanes[J]. Journal of the American Chemical Society, 2005, 127(37): 12909-12923.
[36] GILES I D, CHIFOTIDES H T, SHATRUK M, et al. Anion-templated self-assembly of highly stable Fe(II) pentagonal metallacycles with short anion-pi contacts[J]. Chemical Communications, 2011, 47(47): 12604-12606.
[37] CHIFOTIDES H T, GILES I D, DUNBAR K R. Supramolecular architectures with pi-acidic 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine cavities: role of anion-pi interactions in the remarkable stability of Fe(II) metallacycles in solution[J]. Journal of the American Chemical Society, 2013, 135(8): 3039-3055.
[38] WOODS T J, BALLESTEROS-RIVAS M F, OSTROVSKY S M, et al. Strong direct magnetic coupling in a dinuclear Co(II) tetrazine radical single-molecule magnet[J]. Chemistry - A European Journal, 2015, 21(29): 10302-10305.
[39] WOODS T J, STOUT H D, DOLINAR B S, et al. Strong ferromagnetic exchange coupling mediated by a bridging tetrazine radical in a dinuclear nickel complex[J]. Inorganic Chemistry, 2017, 56(20): 12094-12097.
[40] ALEXANDROPOULOS D I, DOLINAR B S, VIGNESH K R, et al. Putting a new spin on supramolecular metallacycles: Co3 triangle and Co4 square bearing tetrazine-based radicals as bridges[J]. Journal of the American Chemical Society, 2017, 139(32): 11040-11043.
[41] DOLINAR B S, GOMEZ-COCA S, ALEXANDROPOULOS D I, et al. An air stable radical-bridged dysprosium single molecule magnet and its neutral counterpart: redox switching of magnetic relaxation dynamics[J]. Chemical Communications, 2017, 53(14): 2283-2286.
[42] DOLINAR B S, ALEXANDROPOULOS D I, VIGNESH K R, et al. Lanthanide triangles supported by radical bridging ligands[J]. Journal of the American Chemical Society, 2018, 140(3): 908-911.
[43] LEMES M A, BRUNET G, PIALAT A, et al. Strong ferromagnetic exchange coupling in a {Ni} cluster mediated through an air-stable tetrazine-based radical anion[J]. Chemical Communications, 2017, 53(62): 8660-8663.
[44] LEMES M A, STEIN H N, GABIDULLIN B, et al. Probing magnetic-exchange coupling in supramolecular squares based on reducible tetrazine-derived ligands[J]. Chemistry - A European Journal, 2018, 24(17): 4259-4263.
[45] MAVRAGANI N, ERRULAT D, GALICO D A, et al. Radical-bridged Ln4 metallocene complexes with strong magnetic coupling and a large coercive field[J]. Angewandte Chemie International Edition, 2021, 60(45): 24206-24213.
[46] GUO Z, DENG Y F, ZHANG Y, et al. Two azido-bridged
[2x2] cobalt(ii) grids featuring single-molecule magnet behaviour[J]. Dalton Transactions, 2020, 49(27): 9218-9222.
[47] GUO Z, DENG Y F, PIKRAMENOU Z, et al. Strong coupling and slow relaxation of the magnetization for an air-stable [Co4] square with both tetrazine radicals and azido bridges[J]. Inorganic Chemistry, 2021, 60(6): 3651-3656.
[48] ABRAGAM A, BLEANEY B. Electron paramagnetic resonance of transitionions[M]. UK: Clarendon Press, Oxford, 1970: 925-940.
[49] VAN VLECK J H. Paramagnetic relaxation times for titanium and chrome alum[J]. Physical Review, 1940, 57(5): 426-447.
[50] RINEHART J D, LONG J R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets[J]. Chemical Science, 2011, 2(11): 2078-2085.
[51] YAO B, SINGH M K, DENG Y F, et al. A dicobalt(ii) single-molecule magnet via a well-designed dual-capping tetrazine radical ligand[J]. Inorganic Chemistry, 2021, 60(24): 18698-18705.
[52] LE T, COURANT T, MERAD J, et al. s-Tetrazine Dyes: A facile generation of photoredox organocatalysts for routine oxidations[J]. The Journal of Organic Chemistry, 2019, 84(24): 16139-16146.
[53] CHILTON N F, ANDERSON R P, TURNER L D, et al. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes[J]. Journal of Computational Chemistry, 2013, 34(13): 1164-1175.
修改评论