[1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56 -58.
[2] YANG F, WANG M, ZHANG D, et al. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization[J]. Chemical Reviews 2020, 120(5): 2693 -2758.
[3] LI Y. Carbon Nanotube Research in Its 30th Year[J]. ACS Nano, 2021, 15(6): 9197 -9200.
[4] YANG X, ZHAO X, LIU T, et al. Precise Synthesis of Carbon Nanotubes and One -Dimensional Hybrids from Templates†[J]. Chinese Journal of Chemistry, 2021, 39(6): 1726-1744.
[5] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
[6] YANG F, WANG X, ZHANG D, et al. Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts[J]. Journal of the American Chemical Society, 2015, 137(27): 8688-8691.
[7] YANG F, WANG X, ZHANG D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522 -524.
[8] HILLS G, LAU C, WRIGHT A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602.
[9] BACHILO SERGEI M, STRANO MICHAEL S, KITTRELL C, et al. Structure -Assigned Optical Spectra of Single-Walled Carbon Nanotubes[J]. Science, 2002, 298(5602): 2361-2366.
[10] HONG G, DIAO S, CHANG J, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 2014, 8(9): 723-730.
[11] KIM SHI H, HAINES CARTER S, LI N, et al. Harvesting electrical energy from carbon nanotube yarn twist[J]. Science, 2017, 357(6353): 773-778.
[12] TUNUGUNTLA R H, HENLEY R Y, YAO Y-C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins[J]. Science, 2017, 357(6353): 792.
[13] PAN X, FAN Z, CHEN W, et al. Enhanced ethanol production inside carbon -nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507 -511.
[14] MINERS S A, RANCE G A, KHLOBYSTOV A N. Chemical reactions confined within carbon nanotubes[J]. Chemical Society eviews 2016, 45(17): 4727-4746.
[15] BRITZ D A, KHLOBYSTOV A N. Noncovalent interactions of molecules with single walled carbon nanotubes[J]. Chemical Society Reviews, 2006, 35(7): 637 -659.
[16] PEDERSON M R, BROUGHTON J Q. Nanocapillarity in fullerene tubules[J]. Physical Review Letters, 1992, 69(18): 2689-2692.
[17] AJAYAN P M, LIJIMA S. Capillarity-induced filling of carbon nanotubes[J]. Nature, 参考文献721993, 361(6410): 333-334.
[18] TERRONES M, GROBERT N, ZHANG J P, et al. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films[J]. Chemical Physics Letters, 1998, 285(5): 299-305.
[19] GUAN L, SHI Z, LI H, et al. Super-long continuous Ni nanowires encapsulated in carbon nanotubes[J]. Chemical Communications, 2004(17): 1988-1989.
[20] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[21] COSTA P M F J, SLOAN J, RUTHERFORD T, et al. Encapsulation of RexOy Clusters within Single-Walled Carbon Nanotubes and Their in tubulo Reduction and Sintering to Re Metal[J]. Chemistry of Materials, 2005, 17(26): 6579-6582.
[22] DUJARDIN E, EBBESEN T W, HIURA H, et al. Capillarity and Wetting of Carbon Nanotubes[J]. Science, 1994, 265(5180): 1850-1852.
[23] CHEN J Y, KUTANA A, COLLIER C P, et al. Electrowetting in Carbon Nanotubes[J]. Science, 2005, 310(5753): 1480-1483.
[24] SUN L, BANHART F, KRASHENINNIKOV A V, et al. Carbon Nanotubes as High Pressure Cylinders and Nanoextruders[J]. Science, 2006, 312(5777): 1199 -1202.
[25] CHEN W, PAN X, WILLINGER M-G, et al. Facile Autoreduction of Iron Oxide/Carbon Nanotube Encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137.
[26] CHEN W, PAN X, BAO X. Tuning of Redox Properties of Iron and Iron Oxides via Encapsulation within Carbon Nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426.
[27] AGRAWAL K V, SHIMIZU S, DRAHUSHUK L W, et al. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes[J]. Nature Nanotechnology, 2017, 12(3): 267-273.
[28] CHAMBERLAIN T W, MEYER J C, BISKUPEK J, et al. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale[J]. Nature Chemistry, 2011, 3(9): 732-737.
[29] CAO K, BISKUPEK J, STOPPIELLO C T, et al. Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube[J]. Nature Chemistry, 2020, 12(10): 921-928.
[30] NAKAMURO T, SAKAKIBARA M, NADA H, et al. Capturing the Moment of Emergence of Crystal Nucleus from Disorder[J]. Journal of the American Chemical Society, 2021, 143(4): 1763-1767.
[31] MEYER R R, SLOAN J, DUNIN-BORKOWSKI R E, et al. Discrete Atom Imaging of One-Dimensional Crystals Formed Within Single-Walled Carbon Nanotubes[J]. Science, 2000, 289(5483): 1324.参考文献73
[32] SENGA R, KOMSA H P, LIU Z, et al. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes[J]. Nature Materials, 2014, 13(11): 1050-1054.
[33] SHI L, ROHRINGER P, SUENAGA K, et al. Confined linear carbon chains as a route to bulk carbyne[J]. Nature Materials, 2016, 15(6): 634-639.
[34] SLOAN J, KIRKLAND A I, HUTCHISON J L, et al. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes[J]. Chemical Communications, 2002(13): 1319-1332.
[35] LI L-J, KHLOBYSTOV A N, WILTSHIRE J G, et al. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes[J]. Nature Materials, 2005, 4(6): 481-485.
[36] CHUVILIN A, BICHOUTSKAIA E, GIMENEZ-LOPEZ M C, et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube[J]. Nature Materials, 2011, 10(9): 687-692.
[37] DEL CARMEN GIMéNEZ-LóPEZ M, MORO F, LA TORRE A, et al. Encapsulation of single-molecule magnets in carbon nanotubes[J]. Nature Communications, 2011, 2(1): 407.
[38] VILLALVA J, DEVELIOGLU A, MONTENEGRO-POHLHAMMER N, et al. Spin state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules[J]. Nature Communications, 2021, 12(1): 1578.
[39] QU H, RAYABHARAM A, WU X, et al. Selective filling of n-hexane in a tight nanopore[J]. Nature Communications, 2021, 12(1): 310.
[40] CHEN Z, GUAN Z, LI M, et al. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation[J]. Angewandte Chemie International Edition in English, 2011, 50(21): 4913 -4917.
[41] PAN X, BAO X. Reactions over catalysts confined in carbon nanotubes[J]. Chemical Communications, 2008(47)
[42] MCSWEENEY R L, CHAMBERLAIN T W, DAVIES E S, et al. Single-walled carbon nanotubes as nano-electrode and nano-reactor to control the pathways of a redox reaction[J]. Chemical Communications, 2014, 50(92): 14338-14340.
[43] MIRAS H N, VILA-NADAL L, CRONIN L. Polyoxometalate based open-frameworks (POM-OFs)[J]. Chemical Society eviews 2014, 43(16): 5679-5699.
[44] KUDO T. A new heteropolyacid with carbon as a heteroatom in a Keggin-like structure[J]. Nature, 1984, 312(5994): 537-538.
[45] WANG S S, YANG G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews 2015, 115(11): 4893-4962.
[46] BENSEGHIR Y, LEMARCHAND A, DUGUET M, et al. Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal–Organic 参考文献74Framework: In Depth Structural Characterization and Photocatalytic Properties for CO2 Reduction[J]. Journal of the American Chemical Society, 2020, 142(20): 9428 -9438.
[47] SIADATNASAB F, KARAMI K, KHATAEE A. Keggin-type polyoxometalates supported on PANI-coated CuS: Synthesis, characterization and application as the efficient adsorbents for selective dye removal[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 205-216.
[48] CAO Z, YANG W, MIN X, et al. Recent advances in synthesis and anti-tumor effect of organism-modified polyoxometalates inorganic organic hybrids[J]. Inorganic Chemistry Communications, 2021, 134
[49] BUSCHE C, VILA-NADAL L, YAN J, et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters[J]. Nature, 2014, 515(7528): 545 -549.
[50] ZHOU D, HAN B-H. Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles[J]. Advanced Functional Materials, 2010, 20(16): 2717-2722.
[51] TESSONNIER J P, GOUBERT-RENAUDIN S, ALIA S, et al. Structure, stability, and electronic interactions of polyoxometalates on functionalized graphene sheets[J]. Langmuir, 2013, 29(1): 393-402.
[52] KIM Y, SHANMUGAM S. Polyoxometalate–Reduced Graphene Oxide Hybrid Catalyst: Synthesis, Structure, and Electrochemical Properties[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 12197-12204.
[53] WANG S, LI H, LI S, et al. Electrochemical-reduction-assisted assembly of a polyoxometalate/graphene nanocomposite and its enhanced lithium-storage performance[J]. Chemistry - A European Journal 2013, 19(33): 10895-10902.
[54] CHEN J, LIU S, FENG W, et al. Fabrication phosphomolybdic acid–reduced graphene oxide nanocomposite by UV photo-reduction and its electrochemical properties[J].Physical Chemistry Chemical Physics, 2013, 15(15)
[55] GURRENTZ J M, ROSE M J. Covalent Attachment of Polyoxometalates to Passivated Si(111) Substrates: A Stable and Electronic Defect-Free Si|POM Platform[J]. The Journal of Physical Chemistry C, 2021, 125(26): 14287-14298.
[56] LAURANS M, TRINH K, DALLA FRANCESCA K, et al. Covalent Grafting of Polyoxometalate Hybrids onto Flat Silicon/Silicon Oxide: Insights from POMs Layers on Oxides[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 48109 -48123.
[57] RAULA M, GAN OR G, SAGANOVICH M, et al. Polyoxometalate complexes of anatase-titanium dioxide cores in water[J]. Angewandte Chemie International Edition in English, 2015, 54(42): 12416-12421.
[58] INGERSOLL D, KULESZA P J, FAULKNER L R. Polyoxometallate‐Based Layered Composite Films on Electrodes: Preparation Through Alternate Immersions in Modification Solutions[J]. Journal of The Electrochemical Society, 1994, 141(1): 140 -参考文献75147.
[59] LI B, LI W, LI H, et al. Ionic Complexes of Metal Oxide Clusters for Versatile Self Assemblies[J]. Accounts of Chemical Research, 2017, 50(6): 1391-1399.
[60] BU W, LI H, SUN H, et al. Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces[J]. Journal of the American Chemical Society, 2005, 127(22): 8016-8017.
[61] LI H, SUN H, QI W, et al. Onionlike hybrid assemblies based on surfactant encapsulated polyoxometalates[J]. Angewandte Chemie International Edition in English, 2007, 46(8): 1300-1303.
[62] YAN Y, WANG H, LI B, et al. Smart self-assemblies based on a surfactant-encapsulated photoresponsive polyoxometalate complex[J]. Angewandte Chemie International Edition in English, 2010, 49(48): 9233-9236.
[63] NISAR A, LU Y, WANG X. Assembling Polyoxometalate Clusters into Advanced Nanoarchitectures[J]. Chemistry of Materials, 2010, 22(11): 3511-3518.
[64] LIU Q, HE P, YU H, et al. Single molecule–mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures[J]. Science Advances, 2019, 5(7): eaax1081.
[65] LIU Q, ZHANG Q, SHI W, et al. Self-assembly of polyoxometalate clusters into two dimensional clusterphene structures featuring hexagonal pores[J]. Nature Chemistry, 2022
[66] CHENG X, ZHANG S, WANG X. Cluster-Nuclei Coassembled One-Dimensional Subnanometer Heteronanostructures[J]. Nano Letters, 2021, 21(23): 9845-9852.
[67] LIU J, SHI W, NI B, et al. Incorporation of clusters within inorganic materials through their addition during nucleation steps[J]. Nature Chemistry, 2019, 11(9): 839 -845.
[68] LIU J, SHI W, WANG X. Cluster-Nuclei Coassembled into Two-Dimensional Hybrid CuO-PMA Sub-1 nm Nanosheets[J]. Journal of the American Chemical Society, 2019, 141(47): 18754-18758.
[69] AKRAM B, SHI W, ZHANG H, et al. Free-Standing CoO-POM Janus-like Ultrathin Nanosheets[J]. Angewandte Chemie International Edition in English, 2020, 59( 22): 8497-8501.
[70] AKRAM B, NI B, WANG X. Van der Waals Integrated Hybrid POM-Zirconia Flexible Belt-Like Superstructures[J]. Advanced Materials, 2020, 32(2): e1906794.
[71] LIU J, SHI W, WANG X. ZnO–POM Cluster Sub-1 nm Nanosheets as Robust Catalysts for the Oxidation of Thioethers at Room Temperature[J]. Journal of the American Chemical Society, 2021, 143(39): 16217-16225.
[72] ZHANG S, LU Q, YU B, et al. Polyoxometalates Facilitating Synthesis of Subnanometer Nanowires[J]. Advanced Functional Materials, 2021, 31(20)
[73] HU J, JI Y, CHEN W, et al. “Wiring” redox-active polyoxometalates to carbon 参考文献76nanotubes using a sonication-driven periodic functionalization strategy[J]. Energy & Environmental Science, 2016, 9(3): 1095-1101.
[74]JI Y, HU J, HUANG L, et al. Covalent attachment of Anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries[J]. Chemistry - A European Journal 2015, 21(17): 6469-6474.
[75] KANG Z, WANG Y, WANG E, et al. Polyoxometalates nanoparticles: synthesis, characterization and carbon nanotube modification[J]. Solid State Communications, 2004, 129(9): 559-564.
[76] MA D, LIANG L, CHEN W, et al. Covalently Tethered Polyoxometalate -Pyrene Hybrids for Noncovalent Sidewall Functionalization of Single -Walled Carbon Nanotubes as High-Performance Anode Material[J]. Advanced Functional Materials, 2013, 23(48): 6100-6105.
[77] TOMA F M, SARTOREL A, IURLO M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces[J]. Nature Chemistry, 2010, 2(10): 826-831.
[78] CHEN W, HUANG L, HU J, et al. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19668-19673.
[79] HU J, JIA F, SONG Y-F. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries[J]. Chemical Engineering Journal, 2017, 326: 273-280.
[80] FEI B, LU H, CHEN W, et al. Ionic peapods from carbon nanotubes and phosphotungstic acid[J]. Carbon, 2006, 44(11): 2261-2264.
[81] GUAN W, WU Z, SU Z. DFT study of ionic peapod structures from single -walled carbon nanotubes and Lindqvist tungstates[J]. Dalton Trans, 2012, 41(9): 2798 -2803.
[82] SLOAN J, MATTHEWMAN G, DYER-SMITH C, et al. Direct Imaging of the Structure, Relaxation, and Sterically Constrained Motion of Encapsulated Tungsten Polyoxometalate Lindqvist Ions within Carbon Nanotubes[J]. ACS Nano, 2008, 2(5): 966-976.
[83]JORDAN J W, LOWE G A, MCSWEENEY R L, et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes[J]. Advanced Materials, 2019, 31(41): e1904182.
[84]JORDAN J W, CAMERON J M, LOWE G A, et al. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-walled Carbon Nanotubes[J]. Angewandte Chemie International Edition in English, 2021
[85]JORDAN J W, FUNG K L Y, SKOWRON S T, et al. Single-molecule imaging and kinetic analysis of intermolecular polyoxometalate reactions[J]. Chemical Science, 2021, 12(21): 7377-7387.参考文献77
[86] KABA M S, SONG I K, DUNCAN D C, et al. Molecular Shapes, Orientation, and Packing of Polyoxometalate Arrays Imaged by Scanning Tunneling Microscopy[J]. Inorganic Chemistry, 1998, 37(3): 398-406.
[87] YANG X, LIU T, LI R, et al. Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[88] HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Ionic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube[J]. Nano Energy, 2016, 23: 114 -121.
[89] ZHANG J, LIU Y, LI Y, et al. Hybrid assemblies of Eu-containing polyoxometalates and hydrophilic block copolymers with enhanced emission in aqueous solution[J]. Angewandte Chemie International Edition in English, 2012, 51(19): 4598 -4602.
[90] GAUFRèS E, TANG N Y W, LAPOINTE F, et al. Giant Raman scattering from J aggregated dyes inside carbon nanotubes for multispectral imaging[J]. Nature Photonics, 2013, 8(1): 72-78.
[91] LUO Q, WU R, MA L, et al. Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells[J]. Advanced Functional Materials, 2020, 31(6) :2004765.
[92]JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466.
[93] LEE D G, KIM M C, WANG S, et al. Effect of Metal Electrodes on Aging-Induced Performance Recovery in Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48497-48504.
修改评论