中文版 | English
题名

碳纳米管-多酸团簇的限域组装与机理研究

其他题名
CONFINEMENT ASSEMBLY AND MECHANISM OF CARBON NANOTUBE-POLYOXOMETALATES CLUSTERS
姓名
姓名拼音
YU Boyuan
学号
12032092
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
杨烽
导师单位
化学系
论文答辩日期
2022-05-10
论文提交日期
2022-07-08
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

碳纳米管以其优异的性质在许多领域都展现出了极大的发展潜力,管 内腔的纳米级空间为限域组装提供了合适的位点,而多金属氧酸盐明确的 刚性结构、氧化还原特性、配位接枝能力使其在组装材料中得到了广泛的 应用。二者组装而成的碳纳米管封装多酸团簇结构表现出独特的结构特点。 这种适配的主客体结构的形成机理蕴含了复杂的化学行为,并且由于其继 承碳纳米管骨架和多金属氧酸盐功能化性质,在各个领域都体现了潜在的 应用价值。 我们对团簇装填进入碳纳米管内部的机理进行了深入的研究,与多酸 在碳纳米管外壁的修饰明显不同,碳纳米管和多酸团簇间剧烈的氧化还原 反应为装填提供了由电子转移而形成库仑力作用,以库仑力为驱动力,团 簇在秒级的时间即可装填进入碳纳米管内部,金属阳离子不会进入碳纳米 管内部但氢离子可以实现装填,同时装填的效果受到溶剂效应的影响。基 于溶解平衡原理难溶团簇同样可以装填进入碳纳米管内腔。在进行选择性 装填时,装填过程由氧化还原发起,受阴阳离子的库仑力作用,因此团簇 装填受电荷密度和氧化性影响,电荷密度越小装填越容易进行,而氧化性 越强,团簇占比越大,电荷密度的优先级高于氧化性。 团簇装填进入碳纳米管后受其保护可以在易分解的碱性条件下存在, 而碳纳米管装填团簇后侧壁的石墨化程度不受内部装填的影响,在空气中 依旧保持良好的石墨化程度。在使用功能多酸分子,具有荧光性质和磁性 性质的多酸进行装填后,碳纳米管并不表现出荧光性质和磁性性质。在钙 钛矿太阳能电池的构建中,使用装填多酸的碳纳米管在空穴传输层和金属 电极间进行掺杂,电池的光电转换效率有明显提升,但难以保持稳定性。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07-04
参考文献列表

[1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56 -58.
[2] YANG F, WANG M, ZHANG D, et al. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization[J]. Chemical Reviews 2020, 120(5): 2693 -2758.
[3] LI Y. Carbon Nanotube Research in Its 30th Year[J]. ACS Nano, 2021, 15(6): 9197 -9200.
[4] YANG X, ZHAO X, LIU T, et al. Precise Synthesis of Carbon Nanotubes and One -Dimensional Hybrids from Templates†[J]. Chinese Journal of Chemistry, 2021, 39(6): 1726-1744.
[5] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
[6] YANG F, WANG X, ZHANG D, et al. Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts[J]. Journal of the American Chemical Society, 2015, 137(27): 8688-8691.
[7] YANG F, WANG X, ZHANG D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522 -524.
[8] HILLS G, LAU C, WRIGHT A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602.
[9] BACHILO SERGEI M, STRANO MICHAEL S, KITTRELL C, et al. Structure -Assigned Optical Spectra of Single-Walled Carbon Nanotubes[J]. Science, 2002, 298(5602): 2361-2366.
[10] HONG G, DIAO S, CHANG J, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 2014, 8(9): 723-730.
[11] KIM SHI H, HAINES CARTER S, LI N, et al. Harvesting electrical energy from carbon nanotube yarn twist[J]. Science, 2017, 357(6353): 773-778.
[12] TUNUGUNTLA R H, HENLEY R Y, YAO Y-C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins[J]. Science, 2017, 357(6353): 792.
[13] PAN X, FAN Z, CHEN W, et al. Enhanced ethanol production inside carbon -nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507 -511.
[14] MINERS S A, RANCE G A, KHLOBYSTOV A N. Chemical reactions confined within carbon nanotubes[J]. Chemical Society eviews 2016, 45(17): 4727-4746.
[15] BRITZ D A, KHLOBYSTOV A N. Noncovalent interactions of molecules with single walled carbon nanotubes[J]. Chemical Society Reviews, 2006, 35(7): 637 -659.
[16] PEDERSON M R, BROUGHTON J Q. Nanocapillarity in fullerene tubules[J]. Physical Review Letters, 1992, 69(18): 2689-2692.
[17] AJAYAN P M, LIJIMA S. Capillarity-induced filling of carbon nanotubes[J]. Nature, 参考文献721993, 361(6410): 333-334.
[18] TERRONES M, GROBERT N, ZHANG J P, et al. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films[J]. Chemical Physics Letters, 1998, 285(5): 299-305.
[19] GUAN L, SHI Z, LI H, et al. Super-long continuous Ni nanowires encapsulated in carbon nanotubes[J]. Chemical Communications, 2004(17): 1988-1989.
[20] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[21] COSTA P M F J, SLOAN J, RUTHERFORD T, et al. Encapsulation of RexOy Clusters within Single-Walled Carbon Nanotubes and Their in tubulo Reduction and Sintering to Re Metal[J]. Chemistry of Materials, 2005, 17(26): 6579-6582.
[22] DUJARDIN E, EBBESEN T W, HIURA H, et al. Capillarity and Wetting of Carbon Nanotubes[J]. Science, 1994, 265(5180): 1850-1852.
[23] CHEN J Y, KUTANA A, COLLIER C P, et al. Electrowetting in Carbon Nanotubes[J]. Science, 2005, 310(5753): 1480-1483.
[24] SUN L, BANHART F, KRASHENINNIKOV A V, et al. Carbon Nanotubes as High Pressure Cylinders and Nanoextruders[J]. Science, 2006, 312(5777): 1199 -1202.
[25] CHEN W, PAN X, WILLINGER M-G, et al. Facile Autoreduction of Iron Oxide/Carbon Nanotube Encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137.
[26] CHEN W, PAN X, BAO X. Tuning of Redox Properties of Iron and Iron Oxides via Encapsulation within Carbon Nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426.
[27] AGRAWAL K V, SHIMIZU S, DRAHUSHUK L W, et al. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes[J]. Nature Nanotechnology, 2017, 12(3): 267-273.
[28] CHAMBERLAIN T W, MEYER J C, BISKUPEK J, et al. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale[J]. Nature Chemistry, 2011, 3(9): 732-737.
[29] CAO K, BISKUPEK J, STOPPIELLO C T, et al. Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube[J]. Nature Chemistry, 2020, 12(10): 921-928.
[30] NAKAMURO T, SAKAKIBARA M, NADA H, et al. Capturing the Moment of Emergence of Crystal Nucleus from Disorder[J]. Journal of the American Chemical Society, 2021, 143(4): 1763-1767.
[31] MEYER R R, SLOAN J, DUNIN-BORKOWSKI R E, et al. Discrete Atom Imaging of One-Dimensional Crystals Formed Within Single-Walled Carbon Nanotubes[J]. Science, 2000, 289(5483): 1324.参考文献73
[32] SENGA R, KOMSA H P, LIU Z, et al. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes[J]. Nature Materials, 2014, 13(11): 1050-1054.
[33] SHI L, ROHRINGER P, SUENAGA K, et al. Confined linear carbon chains as a route to bulk carbyne[J]. Nature Materials, 2016, 15(6): 634-639.
[34] SLOAN J, KIRKLAND A I, HUTCHISON J L, et al. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes[J]. Chemical Communications, 2002(13): 1319-1332.
[35] LI L-J, KHLOBYSTOV A N, WILTSHIRE J G, et al. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes[J]. Nature Materials, 2005, 4(6): 481-485.
[36] CHUVILIN A, BICHOUTSKAIA E, GIMENEZ-LOPEZ M C, et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube[J]. Nature Materials, 2011, 10(9): 687-692.
[37] DEL CARMEN GIMéNEZ-LóPEZ M, MORO F, LA TORRE A, et al. Encapsulation of single-molecule magnets in carbon nanotubes[J]. Nature Communications, 2011, 2(1): 407.
[38] VILLALVA J, DEVELIOGLU A, MONTENEGRO-POHLHAMMER N, et al. Spin state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules[J]. Nature Communications, 2021, 12(1): 1578.
[39] QU H, RAYABHARAM A, WU X, et al. Selective filling of n-hexane in a tight nanopore[J]. Nature Communications, 2021, 12(1): 310.
[40] CHEN Z, GUAN Z, LI M, et al. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation[J]. Angewandte Chemie International Edition in English, 2011, 50(21): 4913 -4917.
[41] PAN X, BAO X. Reactions over catalysts confined in carbon nanotubes[J]. Chemical Communications, 2008(47)
[42] MCSWEENEY R L, CHAMBERLAIN T W, DAVIES E S, et al. Single-walled carbon nanotubes as nano-electrode and nano-reactor to control the pathways of a redox reaction[J]. Chemical Communications, 2014, 50(92): 14338-14340.
[43] MIRAS H N, VILA-NADAL L, CRONIN L. Polyoxometalate based open-frameworks (POM-OFs)[J]. Chemical Society eviews 2014, 43(16): 5679-5699.
[44] KUDO T. A new heteropolyacid with carbon as a heteroatom in a Keggin-like structure[J]. Nature, 1984, 312(5994): 537-538.
[45] WANG S S, YANG G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews 2015, 115(11): 4893-4962.
[46] BENSEGHIR Y, LEMARCHAND A, DUGUET M, et al. Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal–Organic 参考文献74Framework: In Depth Structural Characterization and Photocatalytic Properties for CO2 Reduction[J]. Journal of the American Chemical Society, 2020, 142(20): 9428 -9438.
[47] SIADATNASAB F, KARAMI K, KHATAEE A. Keggin-type polyoxometalates supported on PANI-coated CuS: Synthesis, characterization and application as the efficient adsorbents for selective dye removal[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 205-216.
[48] CAO Z, YANG W, MIN X, et al. Recent advances in synthesis and anti-tumor effect of organism-modified polyoxometalates inorganic organic hybrids[J]. Inorganic Chemistry Communications, 2021, 134
[49] BUSCHE C, VILA-NADAL L, YAN J, et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters[J]. Nature, 2014, 515(7528): 545 -549.
[50] ZHOU D, HAN B-H. Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles[J]. Advanced Functional Materials, 2010, 20(16): 2717-2722.
[51] TESSONNIER J P, GOUBERT-RENAUDIN S, ALIA S, et al. Structure, stability, and electronic interactions of polyoxometalates on functionalized graphene sheets[J]. Langmuir, 2013, 29(1): 393-402.
[52] KIM Y, SHANMUGAM S. Polyoxometalate–Reduced Graphene Oxide Hybrid Catalyst: Synthesis, Structure, and Electrochemical Properties[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 12197-12204.
[53] WANG S, LI H, LI S, et al. Electrochemical-reduction-assisted assembly of a polyoxometalate/graphene nanocomposite and its enhanced lithium-storage performance[J]. Chemistry - A European Journal 2013, 19(33): 10895-10902.
[54] CHEN J, LIU S, FENG W, et al. Fabrication phosphomolybdic acid–reduced graphene oxide nanocomposite by UV photo-reduction and its electrochemical properties[J].Physical Chemistry Chemical Physics, 2013, 15(15)
[55] GURRENTZ J M, ROSE M J. Covalent Attachment of Polyoxometalates to Passivated Si(111) Substrates: A Stable and Electronic Defect-Free Si|POM Platform[J]. The Journal of Physical Chemistry C, 2021, 125(26): 14287-14298.
[56] LAURANS M, TRINH K, DALLA FRANCESCA K, et al. Covalent Grafting of Polyoxometalate Hybrids onto Flat Silicon/Silicon Oxide: Insights from POMs Layers on Oxides[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 48109 -48123.
[57] RAULA M, GAN OR G, SAGANOVICH M, et al. Polyoxometalate complexes of anatase-titanium dioxide cores in water[J]. Angewandte Chemie International Edition in English, 2015, 54(42): 12416-12421.
[58] INGERSOLL D, KULESZA P J, FAULKNER L R. Polyoxometallate‐Based Layered Composite Films on Electrodes: Preparation Through Alternate Immersions in Modification Solutions[J]. Journal of The Electrochemical Society, 1994, 141(1): 140 -参考文献75147.
[59] LI B, LI W, LI H, et al. Ionic Complexes of Metal Oxide Clusters for Versatile Self Assemblies[J]. Accounts of Chemical Research, 2017, 50(6): 1391-1399.
[60] BU W, LI H, SUN H, et al. Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces[J]. Journal of the American Chemical Society, 2005, 127(22): 8016-8017.
[61] LI H, SUN H, QI W, et al. Onionlike hybrid assemblies based on surfactant encapsulated polyoxometalates[J]. Angewandte Chemie International Edition in English, 2007, 46(8): 1300-1303.
[62] YAN Y, WANG H, LI B, et al. Smart self-assemblies based on a surfactant-encapsulated photoresponsive polyoxometalate complex[J]. Angewandte Chemie International Edition in English, 2010, 49(48): 9233-9236.
[63] NISAR A, LU Y, WANG X. Assembling Polyoxometalate Clusters into Advanced Nanoarchitectures[J]. Chemistry of Materials, 2010, 22(11): 3511-3518.
[64] LIU Q, HE P, YU H, et al. Single molecule–mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures[J]. Science Advances, 2019, 5(7): eaax1081.
[65] LIU Q, ZHANG Q, SHI W, et al. Self-assembly of polyoxometalate clusters into two dimensional clusterphene structures featuring hexagonal pores[J]. Nature Chemistry, 2022
[66] CHENG X, ZHANG S, WANG X. Cluster-Nuclei Coassembled One-Dimensional Subnanometer Heteronanostructures[J]. Nano Letters, 2021, 21(23): 9845-9852.
[67] LIU J, SHI W, NI B, et al. Incorporation of clusters within inorganic materials through their addition during nucleation steps[J]. Nature Chemistry, 2019, 11(9): 839 -845.
[68] LIU J, SHI W, WANG X. Cluster-Nuclei Coassembled into Two-Dimensional Hybrid CuO-PMA Sub-1 nm Nanosheets[J]. Journal of the American Chemical Society, 2019, 141(47): 18754-18758.
[69] AKRAM B, SHI W, ZHANG H, et al. Free-Standing CoO-POM Janus-like Ultrathin Nanosheets[J]. Angewandte Chemie International Edition in English, 2020, 59( 22): 8497-8501.
[70] AKRAM B, NI B, WANG X. Van der Waals Integrated Hybrid POM-Zirconia Flexible Belt-Like Superstructures[J]. Advanced Materials, 2020, 32(2): e1906794.
[71] LIU J, SHI W, WANG X. ZnO–POM Cluster Sub-1 nm Nanosheets as Robust Catalysts for the Oxidation of Thioethers at Room Temperature[J]. Journal of the American Chemical Society, 2021, 143(39): 16217-16225.
[72] ZHANG S, LU Q, YU B, et al. Polyoxometalates Facilitating Synthesis of Subnanometer Nanowires[J]. Advanced Functional Materials, 2021, 31(20)
[73] HU J, JI Y, CHEN W, et al. “Wiring” redox-active polyoxometalates to carbon 参考文献76nanotubes using a sonication-driven periodic functionalization strategy[J]. Energy & Environmental Science, 2016, 9(3): 1095-1101.
[74]JI Y, HU J, HUANG L, et al. Covalent attachment of Anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries[J]. Chemistry - A European Journal 2015, 21(17): 6469-6474.
[75] KANG Z, WANG Y, WANG E, et al. Polyoxometalates nanoparticles: synthesis, characterization and carbon nanotube modification[J]. Solid State Communications, 2004, 129(9): 559-564.
[76] MA D, LIANG L, CHEN W, et al. Covalently Tethered Polyoxometalate -Pyrene Hybrids for Noncovalent Sidewall Functionalization of Single -Walled Carbon Nanotubes as High-Performance Anode Material[J]. Advanced Functional Materials, 2013, 23(48): 6100-6105.
[77] TOMA F M, SARTOREL A, IURLO M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces[J]. Nature Chemistry, 2010, 2(10): 826-831.
[78] CHEN W, HUANG L, HU J, et al. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19668-19673.
[79] HU J, JIA F, SONG Y-F. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries[J]. Chemical Engineering Journal, 2017, 326: 273-280.
[80] FEI B, LU H, CHEN W, et al. Ionic peapods from carbon nanotubes and phosphotungstic acid[J]. Carbon, 2006, 44(11): 2261-2264.
[81] GUAN W, WU Z, SU Z. DFT study of ionic peapod structures from single -walled carbon nanotubes and Lindqvist tungstates[J]. Dalton Trans, 2012, 41(9): 2798 -2803.
[82] SLOAN J, MATTHEWMAN G, DYER-SMITH C, et al. Direct Imaging of the Structure, Relaxation, and Sterically Constrained Motion of Encapsulated Tungsten Polyoxometalate Lindqvist Ions within Carbon Nanotubes[J]. ACS Nano, 2008, 2(5): 966-976.
[83]JORDAN J W, LOWE G A, MCSWEENEY R L, et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes[J]. Advanced Materials, 2019, 31(41): e1904182.
[84]JORDAN J W, CAMERON J M, LOWE G A, et al. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-walled Carbon Nanotubes[J]. Angewandte Chemie International Edition in English, 2021
[85]JORDAN J W, FUNG K L Y, SKOWRON S T, et al. Single-molecule imaging and kinetic analysis of intermolecular polyoxometalate reactions[J]. Chemical Science, 2021, 12(21): 7377-7387.参考文献77
[86] KABA M S, SONG I K, DUNCAN D C, et al. Molecular Shapes, Orientation, and Packing of Polyoxometalate Arrays Imaged by Scanning Tunneling Microscopy[J]. Inorganic Chemistry, 1998, 37(3): 398-406.
[87] YANG X, LIU T, LI R, et al. Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[88] HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Ionic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube[J]. Nano Energy, 2016, 23: 114 -121.
[89] ZHANG J, LIU Y, LI Y, et al. Hybrid assemblies of Eu-containing polyoxometalates and hydrophilic block copolymers with enhanced emission in aqueous solution[J]. Angewandte Chemie International Edition in English, 2012, 51(19): 4598 -4602.
[90] GAUFRèS E, TANG N Y W, LAPOINTE F, et al. Giant Raman scattering from J aggregated dyes inside carbon nanotubes for multispectral imaging[J]. Nature Photonics, 2013, 8(1): 72-78.
[91] LUO Q, WU R, MA L, et al. Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells[J]. Advanced Functional Materials, 2020, 31(6) :2004765.
[92]JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466.
[93] LEE D G, KIM M C, WANG S, et al. Effect of Metal Electrodes on Aging-Induced Performance Recovery in Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48497-48504.

所在学位评定分委会
化学系
国内图书分类号
O61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/353156
专题理学院_化学系
推荐引用方式
GB/T 7714
于博源. 碳纳米管-多酸团簇的限域组装与机理研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032092-于博源-化学系.pdf(8266KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于博源]的文章
百度学术
百度学术中相似的文章
[于博源]的文章
必应学术
必应学术中相似的文章
[于博源]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。